最小译码复杂度的最优拟正交空时分组码

Haiquan Wang, Dong Wang, X. Xia
{"title":"最小译码复杂度的最优拟正交空时分组码","authors":"Haiquan Wang, Dong Wang, X. Xia","doi":"10.1109/ISIT.2005.1523525","DOIUrl":null,"url":null,"abstract":"In this paper, we first present a necessary and sufficient condition on linear transformations for an QOSTBC to possess the minimum ML decoding complexity, i.e., real symbol pair-wise decoding. We then present optimal linear transformations of information symbols for quasi-orthogonal space-time block codes (QOSTBC) with minimum ML decoding complexity. The optimality is in the sense that the diversity product (or product distance) is maximized when the mean transmission power is fixed","PeriodicalId":92224,"journal":{"name":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","volume":"18 2 1","pages":"1168-1172"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"On optimal quasi-orthogonal space-time block codes with minimum decoding complexity\",\"authors\":\"Haiquan Wang, Dong Wang, X. Xia\",\"doi\":\"10.1109/ISIT.2005.1523525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first present a necessary and sufficient condition on linear transformations for an QOSTBC to possess the minimum ML decoding complexity, i.e., real symbol pair-wise decoding. We then present optimal linear transformations of information symbols for quasi-orthogonal space-time block codes (QOSTBC) with minimum ML decoding complexity. The optimality is in the sense that the diversity product (or product distance) is maximized when the mean transmission power is fixed\",\"PeriodicalId\":92224,\"journal\":{\"name\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"volume\":\"18 2 1\",\"pages\":\"1168-1172\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2005.1523525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2005.1523525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

本文首先给出了QOSTBC线性变换具有最小ML解码复杂度的充要条件,即真正的符号对解码。然后,我们提出了具有最小ML解码复杂度的准正交空时分组码(QOSTBC)信息符号的最优线性变换。最优性是指当平均传输功率一定时,分集积(或产品距离)最大
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On optimal quasi-orthogonal space-time block codes with minimum decoding complexity
In this paper, we first present a necessary and sufficient condition on linear transformations for an QOSTBC to possess the minimum ML decoding complexity, i.e., real symbol pair-wise decoding. We then present optimal linear transformations of information symbols for quasi-orthogonal space-time block codes (QOSTBC) with minimum ML decoding complexity. The optimality is in the sense that the diversity product (or product distance) is maximized when the mean transmission power is fixed
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信