{"title":"多孔砷化镓表面热退火制备银纳米团簇","authors":"T. Amran, M. Hashim, N. K. Al-Obaidi","doi":"10.1109/ESCINANO.2010.5701018","DOIUrl":null,"url":null,"abstract":"Recent advances in nanotechnology that allow metal structures to be built at a nanometer scale have expedited the implementation of the surface-plasmon (SP) resonance effect which effect concentrates and guides light into structures that are smaller than the wavelength of the propagating light. The numerous researchers have successfully shown that the wavelength at which the extinction reaches its maximum can be selectively tuned by adjusting the metal particle size, shape, volume fraction, interparticle distance, and the dielectric properties of the metal as well as that of the surrounding medium [1].","PeriodicalId":6354,"journal":{"name":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silver nanoclusters formation by using thermal annealing on porous GaAs\",\"authors\":\"T. Amran, M. Hashim, N. K. Al-Obaidi\",\"doi\":\"10.1109/ESCINANO.2010.5701018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in nanotechnology that allow metal structures to be built at a nanometer scale have expedited the implementation of the surface-plasmon (SP) resonance effect which effect concentrates and guides light into structures that are smaller than the wavelength of the propagating light. The numerous researchers have successfully shown that the wavelength at which the extinction reaches its maximum can be selectively tuned by adjusting the metal particle size, shape, volume fraction, interparticle distance, and the dielectric properties of the metal as well as that of the surrounding medium [1].\",\"PeriodicalId\":6354,\"journal\":{\"name\":\"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESCINANO.2010.5701018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESCINANO.2010.5701018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Silver nanoclusters formation by using thermal annealing on porous GaAs
Recent advances in nanotechnology that allow metal structures to be built at a nanometer scale have expedited the implementation of the surface-plasmon (SP) resonance effect which effect concentrates and guides light into structures that are smaller than the wavelength of the propagating light. The numerous researchers have successfully shown that the wavelength at which the extinction reaches its maximum can be selectively tuned by adjusting the metal particle size, shape, volume fraction, interparticle distance, and the dielectric properties of the metal as well as that of the surrounding medium [1].