基于GPU的稀疏近似逆预处理算法优化

Xinyue Chu, Yizhou Wang, Qi Chen, Jiaquan Gao
{"title":"基于GPU的稀疏近似逆预处理算法优化","authors":"Xinyue Chu,&nbsp;Yizhou Wang,&nbsp;Qi Chen,&nbsp;Jiaquan Gao","doi":"10.1016/j.tbench.2023.100087","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we present an optimization sparse approximate inverse (SPAI) preconditioning algorithm on GPU, called GSPAI-Opt. In GSPAI-Opt, it fuses the advantages of two popular SPAI preconditioning algorithms, and has the following novelties: (1) an optimization strategy is proposed to choose whether to use the constant or non-constant thread group for any sparse pattern of the preprocessor, and (2) a parallel framework of optimizing the SPAI preconditioner is proposed on GPU, and (3) for each component of the preconditioner, a decision tree is established to choose the optimal kernel of computing it. Experimental results validate the effectiveness of GSPAI-Opt.</p></div>","PeriodicalId":100155,"journal":{"name":"BenchCouncil Transactions on Benchmarks, Standards and Evaluations","volume":"2 4","pages":"Article 100087"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772485923000042/pdfft?md5=8592fe298c854dc9f2e85112414f0c44&pid=1-s2.0-S2772485923000042-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Optimizing the sparse approximate inverse preconditioning algorithm on GPU\",\"authors\":\"Xinyue Chu,&nbsp;Yizhou Wang,&nbsp;Qi Chen,&nbsp;Jiaquan Gao\",\"doi\":\"10.1016/j.tbench.2023.100087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we present an optimization sparse approximate inverse (SPAI) preconditioning algorithm on GPU, called GSPAI-Opt. In GSPAI-Opt, it fuses the advantages of two popular SPAI preconditioning algorithms, and has the following novelties: (1) an optimization strategy is proposed to choose whether to use the constant or non-constant thread group for any sparse pattern of the preprocessor, and (2) a parallel framework of optimizing the SPAI preconditioner is proposed on GPU, and (3) for each component of the preconditioner, a decision tree is established to choose the optimal kernel of computing it. Experimental results validate the effectiveness of GSPAI-Opt.</p></div>\",\"PeriodicalId\":100155,\"journal\":{\"name\":\"BenchCouncil Transactions on Benchmarks, Standards and Evaluations\",\"volume\":\"2 4\",\"pages\":\"Article 100087\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772485923000042/pdfft?md5=8592fe298c854dc9f2e85112414f0c44&pid=1-s2.0-S2772485923000042-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BenchCouncil Transactions on Benchmarks, Standards and Evaluations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772485923000042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BenchCouncil Transactions on Benchmarks, Standards and Evaluations","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772485923000042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,我们提出了一种GPU上的优化稀疏近似逆(SPAI)预处理算法,称为GSPAI-Opt。GSPAI-Opt,融合两种流行的优势SPAI预处理算法,和下面的小礼品:(1)提出了一种优化策略选择是否使用常数或不恒定线程组的稀疏模式预处理器,和(2)一个并行的框架上,提出了优化SPAI预处理GPU,和(3)对于每个组件的预处理,建立决策树来选择最优计算内核。实验结果验证了GSPAI-Opt算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing the sparse approximate inverse preconditioning algorithm on GPU

In this study, we present an optimization sparse approximate inverse (SPAI) preconditioning algorithm on GPU, called GSPAI-Opt. In GSPAI-Opt, it fuses the advantages of two popular SPAI preconditioning algorithms, and has the following novelties: (1) an optimization strategy is proposed to choose whether to use the constant or non-constant thread group for any sparse pattern of the preprocessor, and (2) a parallel framework of optimizing the SPAI preconditioner is proposed on GPU, and (3) for each component of the preconditioner, a decision tree is established to choose the optimal kernel of computing it. Experimental results validate the effectiveness of GSPAI-Opt.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信