某些命题系统中一类平衡公式的证明复杂性

A. Chubaryan
{"title":"某些命题系统中一类平衡公式的证明复杂性","authors":"A. Chubaryan","doi":"10.46991/pysu:a/2022.56.2.058","DOIUrl":null,"url":null,"abstract":"In this paper four proof complexity characteristics for some class of balanced tautologies are investigated in two proof systems of propositional logic. One of the considered systems is based on determinative disjunctive normal form, the other on the generalization of splitting method. The optimal upper and lower bounds by logarithmic scale for all main proof complexity characteristics of considered tautologies are obtained in both systems.","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PROOF COMPLEXITIES ON A CLASS OF BALANCED FORMULAS IN SOME PROPOSITIONAL SYSTEMS\",\"authors\":\"A. Chubaryan\",\"doi\":\"10.46991/pysu:a/2022.56.2.058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper four proof complexity characteristics for some class of balanced tautologies are investigated in two proof systems of propositional logic. One of the considered systems is based on determinative disjunctive normal form, the other on the generalization of splitting method. The optimal upper and lower bounds by logarithmic scale for all main proof complexity characteristics of considered tautologies are obtained in both systems.\",\"PeriodicalId\":21146,\"journal\":{\"name\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46991/pysu:a/2022.56.2.058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2022.56.2.058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在命题逻辑的两个证明系统中研究了一类平衡重言式的四个证明复杂性特征。其中一个系统基于决定论析取范式,另一个系统基于分裂方法的推广。在这两个系统中,得到了所考虑的重言式的所有主要证明复杂度特征的最优对数尺度上界和下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PROOF COMPLEXITIES ON A CLASS OF BALANCED FORMULAS IN SOME PROPOSITIONAL SYSTEMS
In this paper four proof complexity characteristics for some class of balanced tautologies are investigated in two proof systems of propositional logic. One of the considered systems is based on determinative disjunctive normal form, the other on the generalization of splitting method. The optimal upper and lower bounds by logarithmic scale for all main proof complexity characteristics of considered tautologies are obtained in both systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信