具有非线性免疫反应的病毒感染模型的计算机模拟与稳定性

Nannan Cheng, Yang Yang
{"title":"具有非线性免疫反应的病毒感染模型的计算机模拟与稳定性","authors":"Nannan Cheng, Yang Yang","doi":"10.1109/ICIC.2011.127","DOIUrl":null,"url":null,"abstract":"In this paper, a virus infection dynamics model with nonlinear immune response is studied. By analyzing the corresponding characteristic equation, the local stability of each of feasible equilibri of the model is discussed. By constructing appropriate Lyapunov functional, the global stability of the infection-free equilibrium and the immune-free infection equilibrium and virus infection equilibrium are proved. Numerical simulations are carried out to illustrate the theoretical results.","PeriodicalId":6397,"journal":{"name":"2011 Fourth International Conference on Information and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Computer Simulation and Stability of a Virus Infection Model with Nonlinear Immune Response\",\"authors\":\"Nannan Cheng, Yang Yang\",\"doi\":\"10.1109/ICIC.2011.127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a virus infection dynamics model with nonlinear immune response is studied. By analyzing the corresponding characteristic equation, the local stability of each of feasible equilibri of the model is discussed. By constructing appropriate Lyapunov functional, the global stability of the infection-free equilibrium and the immune-free infection equilibrium and virus infection equilibrium are proved. Numerical simulations are carried out to illustrate the theoretical results.\",\"PeriodicalId\":6397,\"journal\":{\"name\":\"2011 Fourth International Conference on Information and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Information and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIC.2011.127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Information and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIC.2011.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有非线性免疫反应的病毒感染动力学模型。通过分析相应的特征方程,讨论了模型各可行平衡点的局部稳定性。通过构造适当的Lyapunov泛函,证明了无感染平衡点、无免疫感染平衡点和病毒感染平衡点的全局稳定性。数值模拟验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Computer Simulation and Stability of a Virus Infection Model with Nonlinear Immune Response
In this paper, a virus infection dynamics model with nonlinear immune response is studied. By analyzing the corresponding characteristic equation, the local stability of each of feasible equilibri of the model is discussed. By constructing appropriate Lyapunov functional, the global stability of the infection-free equilibrium and the immune-free infection equilibrium and virus infection equilibrium are proved. Numerical simulations are carried out to illustrate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信