变步长区间龙格-库塔方法

A. Marciniak, B. Szyszka
{"title":"变步长区间龙格-库塔方法","authors":"A. Marciniak, B. Szyszka","doi":"10.12921/CMST.2019.0000006","DOIUrl":null,"url":null,"abstract":"In a number of our previous papers we have presented interval versions of Runge-Kutta methods (explicit and implicit) in which the step size was constant. Such an approach has required to choose manually the step size in order to ensure an interval enclosure to the solution with the smallest width. In this paper we propose an algorithm for choosing automatically the step size which guarantees the best (i.e., the tiniest) interval enclosure. This step size is determined with machine accuracy.","PeriodicalId":10561,"journal":{"name":"computational methods in science and technology","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Interval Runge-Kutta Methods with Variable Step Sizes\",\"authors\":\"A. Marciniak, B. Szyszka\",\"doi\":\"10.12921/CMST.2019.0000006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a number of our previous papers we have presented interval versions of Runge-Kutta methods (explicit and implicit) in which the step size was constant. Such an approach has required to choose manually the step size in order to ensure an interval enclosure to the solution with the smallest width. In this paper we propose an algorithm for choosing automatically the step size which guarantees the best (i.e., the tiniest) interval enclosure. This step size is determined with machine accuracy.\",\"PeriodicalId\":10561,\"journal\":{\"name\":\"computational methods in science and technology\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"computational methods in science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12921/CMST.2019.0000006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"computational methods in science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12921/CMST.2019.0000006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在我们以前的一些论文中,我们已经提出了步长为常数的龙格-库塔方法的区间版本(显式和隐式)。这种方法需要手动选择步长,以确保以最小宽度封闭到解决方案的间隔。本文提出了一种自动选择步长以保证最佳(即最小)区间围合的算法。这个步长是由机器精度决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interval Runge-Kutta Methods with Variable Step Sizes
In a number of our previous papers we have presented interval versions of Runge-Kutta methods (explicit and implicit) in which the step size was constant. Such an approach has required to choose manually the step size in order to ensure an interval enclosure to the solution with the smallest width. In this paper we propose an algorithm for choosing automatically the step size which guarantees the best (i.e., the tiniest) interval enclosure. This step size is determined with machine accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信