基于随机矩阵的大数据绿色挖掘算法

Wang Can-wei
{"title":"基于随机矩阵的大数据绿色挖掘算法","authors":"Wang Can-wei","doi":"10.14257/IJDTA.2016.9.12.08","DOIUrl":null,"url":null,"abstract":"Due to big data with related multi-dimensional characteristics, the effective means how to build processing mechanisms and algorithms are still problems; so that the algorithms on big data processing huge resources and time cost of computing, resulting in wasting of energy; for this problem the present study proposes a large data processing algorithm of random matrix theory application, can effectively improve the processing efficiency, thereby increasing the utilization of energy. Results show that the proposed algorithm can effectively reduce the amount of calculation, thus saving and calculating the required energy.","PeriodicalId":13926,"journal":{"name":"International journal of database theory and application","volume":"9 1","pages":"79-88"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green Mining Algorithm for Big Data Based on Random Matrix\",\"authors\":\"Wang Can-wei\",\"doi\":\"10.14257/IJDTA.2016.9.12.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to big data with related multi-dimensional characteristics, the effective means how to build processing mechanisms and algorithms are still problems; so that the algorithms on big data processing huge resources and time cost of computing, resulting in wasting of energy; for this problem the present study proposes a large data processing algorithm of random matrix theory application, can effectively improve the processing efficiency, thereby increasing the utilization of energy. Results show that the proposed algorithm can effectively reduce the amount of calculation, thus saving and calculating the required energy.\",\"PeriodicalId\":13926,\"journal\":{\"name\":\"International journal of database theory and application\",\"volume\":\"9 1\",\"pages\":\"79-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of database theory and application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14257/IJDTA.2016.9.12.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of database theory and application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/IJDTA.2016.9.12.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于大数据具有相关的多维特性,如何构建处理机制和算法的有效手段仍是问题;使算法对大数据的处理耗费巨大的计算资源和时间,造成能量的浪费;针对这一问题,本研究提出了一种应用随机矩阵理论的大数据处理算法,可以有效地提高处理效率,从而提高能源利用率。结果表明,该算法可以有效地减少计算量,从而节省计算所需的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green Mining Algorithm for Big Data Based on Random Matrix
Due to big data with related multi-dimensional characteristics, the effective means how to build processing mechanisms and algorithms are still problems; so that the algorithms on big data processing huge resources and time cost of computing, resulting in wasting of energy; for this problem the present study proposes a large data processing algorithm of random matrix theory application, can effectively improve the processing efficiency, thereby increasing the utilization of energy. Results show that the proposed algorithm can effectively reduce the amount of calculation, thus saving and calculating the required energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信