J. Castells‐Gil, Natalia M. Padial, Neyvis Almora‐Barrios, R. Gil-San-Millan, María Romero-Angel, V. Torres, I. da Silva, J. Waerenborgh, Jaciek Jagiello, J. Navarro, S. Tatay, C. Martí‐Gastaldo
{"title":"异质金属钛-有机骨架作为双金属催化剂在神经毒剂模拟物协同非缓冲水解中的应用","authors":"J. Castells‐Gil, Natalia M. Padial, Neyvis Almora‐Barrios, R. Gil-San-Millan, María Romero-Angel, V. Torres, I. da Silva, J. Waerenborgh, Jaciek Jagiello, J. Navarro, S. Tatay, C. Martí‐Gastaldo","doi":"10.2139/ssrn.3569545","DOIUrl":null,"url":null,"abstract":"Summary Mixed-metal or heterometallic metal-organic frameworks (MOFs) are gaining importance as a route to produce materials with increasing chemical and functional complexities. We report a family of heterometallic titanium frameworks, MUV-101(M), and use them to exemplify the advantages of controlling metal distribution across the framework in heterogeneous catalysis by exploring their activity toward the degradation of a nerve agent simulant of Sarin gas. MUV-101(Fe) is the only pristine MOF capable of catalytic degradation of diisopropyl-fluorophosphate (DIFP) in non-buffered aqueous media. This activity cannot be explained only by the association of two metals, but to their synergistic cooperation, to create a whole that is more efficient than the simple sum of its parts. Our simulations suggest a dual-metal mechanism reminiscent of bimetallic enzymes, where the combination of Ti(IV) Lewis acid and Fe(III)–OH Bronsted base sites leads to a lower energy barrier for more efficient degradation of DIFP in absence of a base.","PeriodicalId":18731,"journal":{"name":"Materials Processing & Manufacturing eJournal","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Heterometallic Titanium-Organic Frameworks as Dual Metal Catalysts for Synergistic Non-Buffered Hydrolysis of Nerve Agent Simulants\",\"authors\":\"J. Castells‐Gil, Natalia M. Padial, Neyvis Almora‐Barrios, R. Gil-San-Millan, María Romero-Angel, V. Torres, I. da Silva, J. Waerenborgh, Jaciek Jagiello, J. Navarro, S. Tatay, C. Martí‐Gastaldo\",\"doi\":\"10.2139/ssrn.3569545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Mixed-metal or heterometallic metal-organic frameworks (MOFs) are gaining importance as a route to produce materials with increasing chemical and functional complexities. We report a family of heterometallic titanium frameworks, MUV-101(M), and use them to exemplify the advantages of controlling metal distribution across the framework in heterogeneous catalysis by exploring their activity toward the degradation of a nerve agent simulant of Sarin gas. MUV-101(Fe) is the only pristine MOF capable of catalytic degradation of diisopropyl-fluorophosphate (DIFP) in non-buffered aqueous media. This activity cannot be explained only by the association of two metals, but to their synergistic cooperation, to create a whole that is more efficient than the simple sum of its parts. Our simulations suggest a dual-metal mechanism reminiscent of bimetallic enzymes, where the combination of Ti(IV) Lewis acid and Fe(III)–OH Bronsted base sites leads to a lower energy barrier for more efficient degradation of DIFP in absence of a base.\",\"PeriodicalId\":18731,\"journal\":{\"name\":\"Materials Processing & Manufacturing eJournal\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Processing & Manufacturing eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3569545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Processing & Manufacturing eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3569545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heterometallic Titanium-Organic Frameworks as Dual Metal Catalysts for Synergistic Non-Buffered Hydrolysis of Nerve Agent Simulants
Summary Mixed-metal or heterometallic metal-organic frameworks (MOFs) are gaining importance as a route to produce materials with increasing chemical and functional complexities. We report a family of heterometallic titanium frameworks, MUV-101(M), and use them to exemplify the advantages of controlling metal distribution across the framework in heterogeneous catalysis by exploring their activity toward the degradation of a nerve agent simulant of Sarin gas. MUV-101(Fe) is the only pristine MOF capable of catalytic degradation of diisopropyl-fluorophosphate (DIFP) in non-buffered aqueous media. This activity cannot be explained only by the association of two metals, but to their synergistic cooperation, to create a whole that is more efficient than the simple sum of its parts. Our simulations suggest a dual-metal mechanism reminiscent of bimetallic enzymes, where the combination of Ti(IV) Lewis acid and Fe(III)–OH Bronsted base sites leads to a lower energy barrier for more efficient degradation of DIFP in absence of a base.