小相对熵量子玻尔兹曼方程的全局存在性和大时间行为

IF 1 4区 数学 Q1 MATHEMATICS
Yong Wang, C. Xiao, Yinghui Zhang
{"title":"小相对熵量子玻尔兹曼方程的全局存在性和大时间行为","authors":"Yong Wang, C. Xiao, Yinghui Zhang","doi":"10.3934/krm.2022025","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we study the global well-posedness of the non-relativistic quantum Boltzmann equation with initial data of small relative entropy. For a class of initial data which are allowed to have arbitrary bounded amplitude and even contain vacuum, we establish the global existence and uniqueness of the mild solutions to the quantum Boltzmann equation in the torus <inline-formula><tex-math id=\"M1\">\\begin{document}$ x\\in\\mathbb T^3 $\\end{document}</tex-math></inline-formula>. The exponential time decay rate is also obtained in the <inline-formula><tex-math id=\"M2\">\\begin{document}$ L^{\\infty}_{x, v} $\\end{document}</tex-math></inline-formula>-norm.</p>","PeriodicalId":49942,"journal":{"name":"Kinetic and Related Models","volume":"68 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence and large time behavior of the quantum Boltzmann equation with small relative entropy\",\"authors\":\"Yong Wang, C. Xiao, Yinghui Zhang\",\"doi\":\"10.3934/krm.2022025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this paper, we study the global well-posedness of the non-relativistic quantum Boltzmann equation with initial data of small relative entropy. For a class of initial data which are allowed to have arbitrary bounded amplitude and even contain vacuum, we establish the global existence and uniqueness of the mild solutions to the quantum Boltzmann equation in the torus <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ x\\\\in\\\\mathbb T^3 $\\\\end{document}</tex-math></inline-formula>. The exponential time decay rate is also obtained in the <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ L^{\\\\infty}_{x, v} $\\\\end{document}</tex-math></inline-formula>-norm.</p>\",\"PeriodicalId\":49942,\"journal\":{\"name\":\"Kinetic and Related Models\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinetic and Related Models\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2022025\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic and Related Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2022025","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

In this paper, we study the global well-posedness of the non-relativistic quantum Boltzmann equation with initial data of small relative entropy. For a class of initial data which are allowed to have arbitrary bounded amplitude and even contain vacuum, we establish the global existence and uniqueness of the mild solutions to the quantum Boltzmann equation in the torus \begin{document}$ x\in\mathbb T^3 $\end{document}. The exponential time decay rate is also obtained in the \begin{document}$ L^{\infty}_{x, v} $\end{document}-norm.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence and large time behavior of the quantum Boltzmann equation with small relative entropy

In this paper, we study the global well-posedness of the non-relativistic quantum Boltzmann equation with initial data of small relative entropy. For a class of initial data which are allowed to have arbitrary bounded amplitude and even contain vacuum, we establish the global existence and uniqueness of the mild solutions to the quantum Boltzmann equation in the torus \begin{document}$ x\in\mathbb T^3 $\end{document}. The exponential time decay rate is also obtained in the \begin{document}$ L^{\infty}_{x, v} $\end{document}-norm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: KRM publishes high quality papers of original research in the areas of kinetic equations spanning from mathematical theory to numerical analysis, simulations and modelling. It includes studies on models arising from physics, engineering, finance, biology, human and social sciences, together with their related fields such as fluid models, interacting particle systems and quantum systems. A more detailed indication of its scope is given by the subject interests of the members of the Board of Editors. Invited expository articles are also published from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信