{"title":"大规模数据流中持久项的空间高效跟踪","authors":"Bibudh Lahiri, S. Tirthapura, J. Chandrashekar","doi":"10.1145/2002259.2002294","DOIUrl":null,"url":null,"abstract":"Motivated by scenarios in network anomaly detection, we consider the problem of detecting persistent items in a data stream, which are items that occur \"regularly\" in the stream. In contrast with heavy-hitters, persistent items do not necessarily contribute significantly to the volume of a stream, and may escape detection by traditional volume-based anomaly detectors.\n We first show that any online algorithm that tracks persistent items exactly must necessarily use a large workspace, and is infeasible to run on a traffic monitoring node. In light of this lower bound, we introduce an approximate formulation of the problem and present a small-space algorithm to approximately track persistent items over a large data stream. Our experiments on a real traffic dataset shows that in typical cases, the algorithm achieves a physical space compression of 5x-7x, while incurring very few false positives (< 1%) and false negatives (< 4%). To our knowledge, this is the first systematic study of the problem of detecting persistent items in a data stream, and our work can help detect anomalies that are temporal, rather than volume based.","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"45 1 1","pages":"70-92"},"PeriodicalIF":2.1000,"publicationDate":"2011-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Space-efficient tracking of persistent items in a massive data stream\",\"authors\":\"Bibudh Lahiri, S. Tirthapura, J. Chandrashekar\",\"doi\":\"10.1145/2002259.2002294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by scenarios in network anomaly detection, we consider the problem of detecting persistent items in a data stream, which are items that occur \\\"regularly\\\" in the stream. In contrast with heavy-hitters, persistent items do not necessarily contribute significantly to the volume of a stream, and may escape detection by traditional volume-based anomaly detectors.\\n We first show that any online algorithm that tracks persistent items exactly must necessarily use a large workspace, and is infeasible to run on a traffic monitoring node. In light of this lower bound, we introduce an approximate formulation of the problem and present a small-space algorithm to approximately track persistent items over a large data stream. Our experiments on a real traffic dataset shows that in typical cases, the algorithm achieves a physical space compression of 5x-7x, while incurring very few false positives (< 1%) and false negatives (< 4%). To our knowledge, this is the first systematic study of the problem of detecting persistent items in a data stream, and our work can help detect anomalies that are temporal, rather than volume based.\",\"PeriodicalId\":48684,\"journal\":{\"name\":\"Statistical Analysis and Data Mining\",\"volume\":\"45 1 1\",\"pages\":\"70-92\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2011-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/2002259.2002294\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2002259.2002294","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Space-efficient tracking of persistent items in a massive data stream
Motivated by scenarios in network anomaly detection, we consider the problem of detecting persistent items in a data stream, which are items that occur "regularly" in the stream. In contrast with heavy-hitters, persistent items do not necessarily contribute significantly to the volume of a stream, and may escape detection by traditional volume-based anomaly detectors.
We first show that any online algorithm that tracks persistent items exactly must necessarily use a large workspace, and is infeasible to run on a traffic monitoring node. In light of this lower bound, we introduce an approximate formulation of the problem and present a small-space algorithm to approximately track persistent items over a large data stream. Our experiments on a real traffic dataset shows that in typical cases, the algorithm achieves a physical space compression of 5x-7x, while incurring very few false positives (< 1%) and false negatives (< 4%). To our knowledge, this is the first systematic study of the problem of detecting persistent items in a data stream, and our work can help detect anomalies that are temporal, rather than volume based.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.