支持向量机在模式分类中的应用:在QSAR研究中的应用

R. Czerminski, A. Yasri, D. Hartsough
{"title":"支持向量机在模式分类中的应用:在QSAR研究中的应用","authors":"R. Czerminski, A. Yasri, D. Hartsough","doi":"10.1002/1521-3838(200110)20:3<227::AID-QSAR227>3.0.CO;2-Y","DOIUrl":null,"url":null,"abstract":"The Support Vector Machine (SVM) approach for classification and regression problems was originally developed by Vapnik and co-workers [1]. For the last few years it has been gaining acceptance in the machine learning community [2]. The purpose of this paper is to evaluate SVM performance in the quantitative structure-activity relationship (QSAR) domain for classification applications and to compare the performance of one particular implementation of an SVM [3] to one particular implementation of an artificial neural network (ANN) [4]. For this purpose, we used artificial data simulating various response surfaces, and biological data derived from the literature covering various pharmacological domains. The results obtained on biological data are also compared to previous work using other modeling techniques. We also discuss the usage of SVM in building QSAR models for biological activity of drugs.","PeriodicalId":20818,"journal":{"name":"Quantitative Structure-activity Relationships","volume":"449 3 1","pages":"227-240"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":"{\"title\":\"Use of Support Vector Machine in Pattern Classification: Application to QSAR Studies\",\"authors\":\"R. Czerminski, A. Yasri, D. Hartsough\",\"doi\":\"10.1002/1521-3838(200110)20:3<227::AID-QSAR227>3.0.CO;2-Y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Support Vector Machine (SVM) approach for classification and regression problems was originally developed by Vapnik and co-workers [1]. For the last few years it has been gaining acceptance in the machine learning community [2]. The purpose of this paper is to evaluate SVM performance in the quantitative structure-activity relationship (QSAR) domain for classification applications and to compare the performance of one particular implementation of an SVM [3] to one particular implementation of an artificial neural network (ANN) [4]. For this purpose, we used artificial data simulating various response surfaces, and biological data derived from the literature covering various pharmacological domains. The results obtained on biological data are also compared to previous work using other modeling techniques. We also discuss the usage of SVM in building QSAR models for biological activity of drugs.\",\"PeriodicalId\":20818,\"journal\":{\"name\":\"Quantitative Structure-activity Relationships\",\"volume\":\"449 3 1\",\"pages\":\"227-240\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"95\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Structure-activity Relationships\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/1521-3838(200110)20:3<227::AID-QSAR227>3.0.CO;2-Y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Structure-activity Relationships","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/1521-3838(200110)20:3<227::AID-QSAR227>3.0.CO;2-Y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

摘要

用于分类和回归问题的支持向量机(SVM)方法最初是由Vapnik及其同事开发的[1]。在过去的几年里,它已经在机器学习社区中获得了认可[2]。本文的目的是评估SVM在分类应用的定量结构-活动关系(QSAR)领域中的性能,并比较SVM的一种特定实现[3]与人工神经网络(ANN)的一种特定实现[4]的性能。为此,我们使用了模拟各种反应面的人工数据,以及从涵盖各种药理学领域的文献中获得的生物学数据。在生物数据上获得的结果也与以前使用其他建模技术的工作进行了比较。我们还讨论了SVM在构建药物生物活性QSAR模型中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of Support Vector Machine in Pattern Classification: Application to QSAR Studies
The Support Vector Machine (SVM) approach for classification and regression problems was originally developed by Vapnik and co-workers [1]. For the last few years it has been gaining acceptance in the machine learning community [2]. The purpose of this paper is to evaluate SVM performance in the quantitative structure-activity relationship (QSAR) domain for classification applications and to compare the performance of one particular implementation of an SVM [3] to one particular implementation of an artificial neural network (ANN) [4]. For this purpose, we used artificial data simulating various response surfaces, and biological data derived from the literature covering various pharmacological domains. The results obtained on biological data are also compared to previous work using other modeling techniques. We also discuss the usage of SVM in building QSAR models for biological activity of drugs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信