关于非同余数的偶族的扩展

L. Reinholz, Qiduan Yang
{"title":"关于非同余数的偶族的扩展","authors":"L. Reinholz, Qiduan Yang","doi":"10.4171/rsmup/105","DOIUrl":null,"url":null,"abstract":"A method that extends existing families of even non-congruent numbers to produce new families of non-congruent numbers with arbitrarily many distinct prime factors is presented. We show that infinitely many new non-congruent numbers can be generated by appending a suitable collection of primes onto any even non-congruent number whose corresponding congruent number elliptic curve has 2-Selmer rank of zero. Our method relies upon Monsky’s formula for computing the 2-Selmer rank of the congruent number elliptic curve. Even non-congruent numbers constructed according to our result have an unlimited number of prime factors in each odd congruence class modulo eight, and have congruent number elliptic curves with 2-Selmer rank equal to zero. Mathematics Subject Classification (2020). Primary: 11G05.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the extension of even families of non-congruent numbers\",\"authors\":\"L. Reinholz, Qiduan Yang\",\"doi\":\"10.4171/rsmup/105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method that extends existing families of even non-congruent numbers to produce new families of non-congruent numbers with arbitrarily many distinct prime factors is presented. We show that infinitely many new non-congruent numbers can be generated by appending a suitable collection of primes onto any even non-congruent number whose corresponding congruent number elliptic curve has 2-Selmer rank of zero. Our method relies upon Monsky’s formula for computing the 2-Selmer rank of the congruent number elliptic curve. Even non-congruent numbers constructed according to our result have an unlimited number of prime factors in each odd congruence class modulo eight, and have congruent number elliptic curves with 2-Selmer rank equal to zero. Mathematics Subject Classification (2020). Primary: 11G05.\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种扩展已有的偶非同数族以产生具有任意多个不同素数因子的新非同数族的方法。我们证明了在任意偶非同余数上附加一个合适的素数集合,其对应的同余数椭圆曲线的2-Selmer秩为0,就可以产生无穷多个新的非同余数。我们的方法依赖于Monsky公式来计算同数椭圆曲线的2-Selmer秩。根据我们的结果构造的偶非同余数在每一个模为8的奇同余类中有无限个素数因子,并且具有2-Selmer秩为零的同余数椭圆曲线。数学学科分类(2020)。主:11 g05。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the extension of even families of non-congruent numbers
A method that extends existing families of even non-congruent numbers to produce new families of non-congruent numbers with arbitrarily many distinct prime factors is presented. We show that infinitely many new non-congruent numbers can be generated by appending a suitable collection of primes onto any even non-congruent number whose corresponding congruent number elliptic curve has 2-Selmer rank of zero. Our method relies upon Monsky’s formula for computing the 2-Selmer rank of the congruent number elliptic curve. Even non-congruent numbers constructed according to our result have an unlimited number of prime factors in each odd congruence class modulo eight, and have congruent number elliptic curves with 2-Selmer rank equal to zero. Mathematics Subject Classification (2020). Primary: 11G05.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信