齐次权加权空间的最优恢复

IF 0.8 4区 数学 Q2 MATHEMATICS
Sbornik Mathematics Pub Date : 2022-01-01 DOI:10.1070/SM9475
K. Osipenko
{"title":"齐次权加权空间的最优恢复","authors":"K. Osipenko","doi":"10.1070/SM9475","DOIUrl":null,"url":null,"abstract":"The paper concerns problems of the recovery of operators from noisy information in weighted -spaces with homogeneous weights. A number of general theorems are proved and applied to problems of the recovery of differential operators from a noisy Fourier transform. In particular, optimal methods are obtained for the recovery of powers of the Laplace operator from a noisy Fourier transform in the -metric. Bibliography: 30 titles.","PeriodicalId":49573,"journal":{"name":"Sbornik Mathematics","volume":"5 1","pages":"385 - 411"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal recovery in weighted spaces with homogeneous weights\",\"authors\":\"K. Osipenko\",\"doi\":\"10.1070/SM9475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper concerns problems of the recovery of operators from noisy information in weighted -spaces with homogeneous weights. A number of general theorems are proved and applied to problems of the recovery of differential operators from a noisy Fourier transform. In particular, optimal methods are obtained for the recovery of powers of the Laplace operator from a noisy Fourier transform in the -metric. Bibliography: 30 titles.\",\"PeriodicalId\":49573,\"journal\":{\"name\":\"Sbornik Mathematics\",\"volume\":\"5 1\",\"pages\":\"385 - 411\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sbornik Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/SM9475\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sbornik Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/SM9475","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

研究了齐次权加权空间中算子从噪声信息中恢复的问题。证明了一些一般定理,并将其应用于从噪声傅里叶变换中恢复微分算子的问题。特别地,得到了从-度规的噪声傅里叶变换中恢复拉普拉斯算子幂的最优方法。参考书目:30篇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal recovery in weighted spaces with homogeneous weights
The paper concerns problems of the recovery of operators from noisy information in weighted -spaces with homogeneous weights. A number of general theorems are proved and applied to problems of the recovery of differential operators from a noisy Fourier transform. In particular, optimal methods are obtained for the recovery of powers of the Laplace operator from a noisy Fourier transform in the -metric. Bibliography: 30 titles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sbornik Mathematics
Sbornik Mathematics 数学-数学
CiteScore
1.40
自引率
12.50%
发文量
37
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The journal has always maintained the highest scientific level in a wide area of mathematics with special attention to current developments in: Mathematical analysis Ordinary differential equations Partial differential equations Mathematical physics Geometry Algebra Functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信