{"title":"基于电容负载八分之一波长耦合线的小型化宽带带通滤波器","authors":"Jin Shi, Dong Jiancheng, Kai Xu, Zhang Lingyan","doi":"10.47037/2021.aces.j.360707","DOIUrl":null,"url":null,"abstract":"A novel miniaturized wideband bandpass filter (BPF) using capacitor-loaded microstrip coupled line is proposed. The capacitors are loaded in parallel and series to the coupled line, which makes the filter just require one one-eighth wavelength coupled line and \nachieve filtering response with multiple transmission poles (TPs) and transmission zeros (TZs). Compared with the state-of-the-art microstrip wideband BPFs, the proposed filter has the advantages of compact size and simple structure. A prototype centered at 1.47 GHz with the 3-dB fractional bandwidth of 86.5% is demonstrated, which exhibits the compact size of 0.003λ2 g (λg is the guided wavelength at the center frequency) and the\nminimum insertion loss of 0.37 dB.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"72 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Miniaturized Wideband Bandpass Filter based on Capacitor-loaded One-eighth Wavelength Coupled Line\",\"authors\":\"Jin Shi, Dong Jiancheng, Kai Xu, Zhang Lingyan\",\"doi\":\"10.47037/2021.aces.j.360707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel miniaturized wideband bandpass filter (BPF) using capacitor-loaded microstrip coupled line is proposed. The capacitors are loaded in parallel and series to the coupled line, which makes the filter just require one one-eighth wavelength coupled line and \\nachieve filtering response with multiple transmission poles (TPs) and transmission zeros (TZs). Compared with the state-of-the-art microstrip wideband BPFs, the proposed filter has the advantages of compact size and simple structure. A prototype centered at 1.47 GHz with the 3-dB fractional bandwidth of 86.5% is demonstrated, which exhibits the compact size of 0.003λ2 g (λg is the guided wavelength at the center frequency) and the\\nminimum insertion loss of 0.37 dB.\",\"PeriodicalId\":8207,\"journal\":{\"name\":\"Applied Computational Electromagnetics Society Journal\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computational Electromagnetics Society Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.47037/2021.aces.j.360707\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2021.aces.j.360707","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Miniaturized Wideband Bandpass Filter based on Capacitor-loaded One-eighth Wavelength Coupled Line
A novel miniaturized wideband bandpass filter (BPF) using capacitor-loaded microstrip coupled line is proposed. The capacitors are loaded in parallel and series to the coupled line, which makes the filter just require one one-eighth wavelength coupled line and
achieve filtering response with multiple transmission poles (TPs) and transmission zeros (TZs). Compared with the state-of-the-art microstrip wideband BPFs, the proposed filter has the advantages of compact size and simple structure. A prototype centered at 1.47 GHz with the 3-dB fractional bandwidth of 86.5% is demonstrated, which exhibits the compact size of 0.003λ2 g (λg is the guided wavelength at the center frequency) and the
minimum insertion loss of 0.37 dB.
期刊介绍:
The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study.
The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed.
A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected.
The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.