为什么随机?排列不变性下的极大极小最优性

Yuehao Bai
{"title":"为什么随机?排列不变性下的极大极小最优性","authors":"Yuehao Bai","doi":"10.2139/ssrn.3475147","DOIUrl":null,"url":null,"abstract":"This paper studies finite sample minimax optimal randomization schemes and estimation schemes in estimating parameters including the average treat- ment effect, when treatment effects are heterogeneous. A randomization scheme is a distribution over a group of permutations of a given treatment assignment vector. An estimation scheme is a joint distribution over assignment vectors, linear estimators, and permutations of assignment vectors. The key element in the minimax problem is that the worst case is over a class of distributions of the data which is invariant to a group of permutations. First, I show that given any assignment vector and any estimator, the uniform distribution over the same group of permutations, namely the complete randomization scheme, is minimax optimal. Second, under further assumptions on the class of distributions and the objective function, I show the minimax optimal estimation scheme involves completely randomizing an assignment vector, while the optimal estimator is the difference-in-means under complete invariance and a weighted average of within-block differences under a block structure, and the numbers of treated and untreated units are determined by Neyman allocations.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Why Randomize? Minimax Optimality under Permutation Invariance\",\"authors\":\"Yuehao Bai\",\"doi\":\"10.2139/ssrn.3475147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies finite sample minimax optimal randomization schemes and estimation schemes in estimating parameters including the average treat- ment effect, when treatment effects are heterogeneous. A randomization scheme is a distribution over a group of permutations of a given treatment assignment vector. An estimation scheme is a joint distribution over assignment vectors, linear estimators, and permutations of assignment vectors. The key element in the minimax problem is that the worst case is over a class of distributions of the data which is invariant to a group of permutations. First, I show that given any assignment vector and any estimator, the uniform distribution over the same group of permutations, namely the complete randomization scheme, is minimax optimal. Second, under further assumptions on the class of distributions and the objective function, I show the minimax optimal estimation scheme involves completely randomizing an assignment vector, while the optimal estimator is the difference-in-means under complete invariance and a weighted average of within-block differences under a block structure, and the numbers of treated and untreated units are determined by Neyman allocations.\",\"PeriodicalId\":11465,\"journal\":{\"name\":\"Econometrics: Econometric & Statistical Methods - General eJournal\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Econometric & Statistical Methods - General eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3475147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3475147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了有限样本最小最大最优随机化方案和估计方案在处理效果是异质的情况下估计包括平均处理效果在内的参数。随机化方案是给定处理分配向量的一组排列上的分布。估计方案是分配向量、线性估计量和分配向量置换上的联合分布。极大极小问题的关键在于,最坏的情况是在数据的一类分布上,这些分布对一组排列是不变的。首先,我证明了给定任意分配向量和任意估计量,在同一组排列上的均匀分布,即完全随机化方案,是极小极大最优的。其次,在对分布和目标函数的进一步假设下,我展示了最小最大最优估计方案涉及完全随机化分配向量,而最优估计量是完全不变下的均值差和块结构下块内差异的加权平均值,并且处理和未处理单元的数量由内曼分配决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Why Randomize? Minimax Optimality under Permutation Invariance
This paper studies finite sample minimax optimal randomization schemes and estimation schemes in estimating parameters including the average treat- ment effect, when treatment effects are heterogeneous. A randomization scheme is a distribution over a group of permutations of a given treatment assignment vector. An estimation scheme is a joint distribution over assignment vectors, linear estimators, and permutations of assignment vectors. The key element in the minimax problem is that the worst case is over a class of distributions of the data which is invariant to a group of permutations. First, I show that given any assignment vector and any estimator, the uniform distribution over the same group of permutations, namely the complete randomization scheme, is minimax optimal. Second, under further assumptions on the class of distributions and the objective function, I show the minimax optimal estimation scheme involves completely randomizing an assignment vector, while the optimal estimator is the difference-in-means under complete invariance and a weighted average of within-block differences under a block structure, and the numbers of treated and untreated units are determined by Neyman allocations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信