双椭圆可积系统的特征行列式和Manakov三重

A. Grekov, Andrei Vladimirovich Zotov
{"title":"双椭圆可积系统的特征行列式和Manakov三重","authors":"A. Grekov, Andrei Vladimirovich Zotov","doi":"10.21468/SCIPOSTPHYS.10.3.055","DOIUrl":null,"url":null,"abstract":"Using the intertwining matrix of the IRF-Vertex correspondence we propose a determinant representation for the generating function of the commuting Hamiltonians of the double elliptic integrable system. More precisely, it is a ratio of the normally ordered determinants, which turns into a single determinant in the classical case. With its help we reproduce the recently suggested expression for the eigenvalues of the Hamiltonians for the dual to elliptic Ruijsenaars model. Next, we study the classical counterpart of our construction, which gives expression for the spectral curve and the corresponding $L$-matrix. This matrix is obtained explicitly as a weighted average of the Ruijsenaars and/or Sklyanin type Lax matrices with the weights as in the theta function series definition. By construction the $L$-matrix satisfies the Manakov triple representation instead of the Lax equation. Finally, we discuss the factorized structure of the $L$-matrix.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":"134 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Characteristic determinant and Manakov triple for the double elliptic integrable system\",\"authors\":\"A. Grekov, Andrei Vladimirovich Zotov\",\"doi\":\"10.21468/SCIPOSTPHYS.10.3.055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the intertwining matrix of the IRF-Vertex correspondence we propose a determinant representation for the generating function of the commuting Hamiltonians of the double elliptic integrable system. More precisely, it is a ratio of the normally ordered determinants, which turns into a single determinant in the classical case. With its help we reproduce the recently suggested expression for the eigenvalues of the Hamiltonians for the dual to elliptic Ruijsenaars model. Next, we study the classical counterpart of our construction, which gives expression for the spectral curve and the corresponding $L$-matrix. This matrix is obtained explicitly as a weighted average of the Ruijsenaars and/or Sklyanin type Lax matrices with the weights as in the theta function series definition. By construction the $L$-matrix satisfies the Manakov triple representation instead of the Lax equation. Finally, we discuss the factorized structure of the $L$-matrix.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":\"134 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21468/SCIPOSTPHYS.10.3.055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21468/SCIPOSTPHYS.10.3.055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

利用irf -顶点对应的交织矩阵,给出了双椭圆可积系统交换哈密顿的生成函数的行列式表示。更准确地说,它是正常有序行列式的比率,在经典情况下,它变成了一个单一的行列式。在它的帮助下,我们重现了最近提出的对偶到椭圆rujsenaars模型的哈密顿量的特征值表达式。接下来,我们研究了我们构造的经典对应物,给出了光谱曲线和相应的L矩阵的表达式。这个矩阵被明确地作为rujsenaars和/或Sklyanin型Lax矩阵的加权平均,其权重与函数级数定义中的相同。通过构造$L$-矩阵来满足Manakov三重表示而不是Lax方程。最后,我们讨论了L矩阵的分解结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characteristic determinant and Manakov triple for the double elliptic integrable system
Using the intertwining matrix of the IRF-Vertex correspondence we propose a determinant representation for the generating function of the commuting Hamiltonians of the double elliptic integrable system. More precisely, it is a ratio of the normally ordered determinants, which turns into a single determinant in the classical case. With its help we reproduce the recently suggested expression for the eigenvalues of the Hamiltonians for the dual to elliptic Ruijsenaars model. Next, we study the classical counterpart of our construction, which gives expression for the spectral curve and the corresponding $L$-matrix. This matrix is obtained explicitly as a weighted average of the Ruijsenaars and/or Sklyanin type Lax matrices with the weights as in the theta function series definition. By construction the $L$-matrix satisfies the Manakov triple representation instead of the Lax equation. Finally, we discuss the factorized structure of the $L$-matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信