基于GCT关注和双模板更新的Siamese网络视觉跟踪算法

Q3 Arts and Humanities
Icon Pub Date : 2023-03-01 DOI:10.1109/ICNLP58431.2023.00014
Sugang Ma, Siwei Sun, Lei Pu, Xiaobao Yang
{"title":"基于GCT关注和双模板更新的Siamese网络视觉跟踪算法","authors":"Sugang Ma, Siwei Sun, Lei Pu, Xiaobao Yang","doi":"10.1109/ICNLP58431.2023.00014","DOIUrl":null,"url":null,"abstract":"To address the problem of insufficient representational capability and lack of online update of the Fully-convolutional Siamese Network (SiamFC) tracker in complex scenes, this paper proposes a siamese network visual tracking algorithm based on GCT attention and dual-template update mechanism. First, the feature extraction network is constructed by replacing AlexNet with the VGG16 network and SoftPool is used to replace the maximum pooling layer. Secondly, the attention module is added after the backbone network to enhance the network’s ability to extract object features. Finally, a dual-template update mechanism is designed for response map fusion. Average Peak-to-Correlation Energy (APCE) is used to determine whether to update the dynamic templates, effectively improving the tracking robustness. The proposed algorithm is trained on the Got-10k dataset and tested on the OTB2015 and VOT2018 datasets. The experimental results show that, compared with SiamFC, the success rate and accuracy reach 0.663 and 0.891 on the OTB2015, which improve respectively 7.6% and 11.9%; On the VOT2018 dataset, the tracking accuracy, robustness and EAO are improved respectively by 2.9%, 29% and 14%. The proposed algorithm achieves high tracking accuracy in complex scenes and the tracking speed reaches 52.6 Fps, which meets the real-time tracking requirements.","PeriodicalId":53637,"journal":{"name":"Icon","volume":"51 1","pages":"31-36"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Siamese Network Visual Tracking Algorithm Based on GCT Attention and Dual-Template Update\",\"authors\":\"Sugang Ma, Siwei Sun, Lei Pu, Xiaobao Yang\",\"doi\":\"10.1109/ICNLP58431.2023.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the problem of insufficient representational capability and lack of online update of the Fully-convolutional Siamese Network (SiamFC) tracker in complex scenes, this paper proposes a siamese network visual tracking algorithm based on GCT attention and dual-template update mechanism. First, the feature extraction network is constructed by replacing AlexNet with the VGG16 network and SoftPool is used to replace the maximum pooling layer. Secondly, the attention module is added after the backbone network to enhance the network’s ability to extract object features. Finally, a dual-template update mechanism is designed for response map fusion. Average Peak-to-Correlation Energy (APCE) is used to determine whether to update the dynamic templates, effectively improving the tracking robustness. The proposed algorithm is trained on the Got-10k dataset and tested on the OTB2015 and VOT2018 datasets. The experimental results show that, compared with SiamFC, the success rate and accuracy reach 0.663 and 0.891 on the OTB2015, which improve respectively 7.6% and 11.9%; On the VOT2018 dataset, the tracking accuracy, robustness and EAO are improved respectively by 2.9%, 29% and 14%. The proposed algorithm achieves high tracking accuracy in complex scenes and the tracking speed reaches 52.6 Fps, which meets the real-time tracking requirements.\",\"PeriodicalId\":53637,\"journal\":{\"name\":\"Icon\",\"volume\":\"51 1\",\"pages\":\"31-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNLP58431.2023.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNLP58431.2023.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

针对全卷积连体网络(SiamFC)跟踪器在复杂场景下表现能力不足和缺乏在线更新的问题,提出了一种基于GCT关注和双模板更新机制的连体网络视觉跟踪算法。首先,用VGG16网络代替AlexNet构建特征提取网络,用SoftPool代替最大池化层。其次,在骨干网之后加入注意力模块,增强网络对目标特征的提取能力;最后,设计了双模板更新机制进行响应图融合。利用平均峰相关能(APCE)来决定是否更新动态模板,有效地提高了跟踪的鲁棒性。该算法在Got-10k数据集上进行了训练,并在OTB2015和VOT2018数据集上进行了测试。实验结果表明,与SiamFC相比,OTB2015的成功率和准确率分别达到0.663和0.891,分别提高了7.6%和11.9%;在VOT2018数据集上,跟踪精度、鲁棒性和EAO分别提高了2.9%、29%和14%。该算法在复杂场景下具有较高的跟踪精度,跟踪速度达到52.6 Fps,满足实时跟踪要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Siamese Network Visual Tracking Algorithm Based on GCT Attention and Dual-Template Update
To address the problem of insufficient representational capability and lack of online update of the Fully-convolutional Siamese Network (SiamFC) tracker in complex scenes, this paper proposes a siamese network visual tracking algorithm based on GCT attention and dual-template update mechanism. First, the feature extraction network is constructed by replacing AlexNet with the VGG16 network and SoftPool is used to replace the maximum pooling layer. Secondly, the attention module is added after the backbone network to enhance the network’s ability to extract object features. Finally, a dual-template update mechanism is designed for response map fusion. Average Peak-to-Correlation Energy (APCE) is used to determine whether to update the dynamic templates, effectively improving the tracking robustness. The proposed algorithm is trained on the Got-10k dataset and tested on the OTB2015 and VOT2018 datasets. The experimental results show that, compared with SiamFC, the success rate and accuracy reach 0.663 and 0.891 on the OTB2015, which improve respectively 7.6% and 11.9%; On the VOT2018 dataset, the tracking accuracy, robustness and EAO are improved respectively by 2.9%, 29% and 14%. The proposed algorithm achieves high tracking accuracy in complex scenes and the tracking speed reaches 52.6 Fps, which meets the real-time tracking requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Icon
Icon Arts and Humanities-History and Philosophy of Science
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信