层状介质的混合光谱积分-有限元方法,包括石墨烯类原子薄层材料

E. Simsek
{"title":"层状介质的混合光谱积分-有限元方法,包括石墨烯类原子薄层材料","authors":"E. Simsek","doi":"10.1109/APS.2014.6905388","DOIUrl":null,"url":null,"abstract":"Layered medium Green's functions (LMGFs) are calculated for a multilayered medium including graphene-like atomically thin layered materials. A spectral integral method (SIM) implemented with LMGFs is used as an exact radiation boundary condition to truncate the computational domain in the finite element method (FEM) to form a hybrid SIM/FEM which is applicable to arbitrary inhomogeneous objects. Numerical studies confirm the accuracy of the method.","PeriodicalId":6663,"journal":{"name":"2014 IEEE Antennas and Propagation Society International Symposium (APSURSI)","volume":"178 1","pages":"2122-2123"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid spectral integral - Finite element method for layered media including graphene-like Atomically Thin Layered Materials\",\"authors\":\"E. Simsek\",\"doi\":\"10.1109/APS.2014.6905388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Layered medium Green's functions (LMGFs) are calculated for a multilayered medium including graphene-like atomically thin layered materials. A spectral integral method (SIM) implemented with LMGFs is used as an exact radiation boundary condition to truncate the computational domain in the finite element method (FEM) to form a hybrid SIM/FEM which is applicable to arbitrary inhomogeneous objects. Numerical studies confirm the accuracy of the method.\",\"PeriodicalId\":6663,\"journal\":{\"name\":\"2014 IEEE Antennas and Propagation Society International Symposium (APSURSI)\",\"volume\":\"178 1\",\"pages\":\"2122-2123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Antennas and Propagation Society International Symposium (APSURSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.2014.6905388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Antennas and Propagation Society International Symposium (APSURSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2014.6905388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文计算了含石墨烯类原子薄层材料的多层介质的格林函数。利用lmgf实现的谱积分法作为精确辐射边界条件,截断有限元法的计算域,形成适用于任意非均匀目标的混合SIM/FEM方法。数值研究证实了该方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid spectral integral - Finite element method for layered media including graphene-like Atomically Thin Layered Materials
Layered medium Green's functions (LMGFs) are calculated for a multilayered medium including graphene-like atomically thin layered materials. A spectral integral method (SIM) implemented with LMGFs is used as an exact radiation boundary condition to truncate the computational domain in the finite element method (FEM) to form a hybrid SIM/FEM which is applicable to arbitrary inhomogeneous objects. Numerical studies confirm the accuracy of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信