{"title":"交叉分析异构多源地理参考信息的灵活框架:J-CO-QL提案及其实现","authors":"Gloria Bordogna, Daniele E. Ciriello, G. Psaila","doi":"10.1145/3106426.3106537","DOIUrl":null,"url":null,"abstract":"The need for cross-analyzing JSON objects representing heterogeneous geo-referenced information coming from multiple sources, such as open data published on the Web by public administrations and crowd-sourced posts and images from social networks, is becoming common for studying, predicting and planning social dynamics. Nevertheless, although NoSQL databases have emerged as a de facto standard means to store JSON objects, a query language that can be easily used by not-programmers to manipulate and correlate such data is still missing. Furthermore, when the information is geo-referenced, we also need both spatial analysis and mapping facilities. In the paper, we motivate the need for a novel flexible framework, named J-CO, that provides a query language, named J-CO-QL, enabling novel declarative (spatial) queries for JSON objects. We will illustrate the basic concepts of the proposal and the possible use of its spatial and non-spatial operators for cross-analyzing open data and crowd-sourced information. This framework is powered by a plug-in for QGIS that can be used to write and execute queries on MongoDB databases.","PeriodicalId":20685,"journal":{"name":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A flexible framework to cross-analyze heterogeneous multi-source geo-referenced information: the J-CO-QL proposal and its implementation\",\"authors\":\"Gloria Bordogna, Daniele E. Ciriello, G. Psaila\",\"doi\":\"10.1145/3106426.3106537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need for cross-analyzing JSON objects representing heterogeneous geo-referenced information coming from multiple sources, such as open data published on the Web by public administrations and crowd-sourced posts and images from social networks, is becoming common for studying, predicting and planning social dynamics. Nevertheless, although NoSQL databases have emerged as a de facto standard means to store JSON objects, a query language that can be easily used by not-programmers to manipulate and correlate such data is still missing. Furthermore, when the information is geo-referenced, we also need both spatial analysis and mapping facilities. In the paper, we motivate the need for a novel flexible framework, named J-CO, that provides a query language, named J-CO-QL, enabling novel declarative (spatial) queries for JSON objects. We will illustrate the basic concepts of the proposal and the possible use of its spatial and non-spatial operators for cross-analyzing open data and crowd-sourced information. This framework is powered by a plug-in for QGIS that can be used to write and execute queries on MongoDB databases.\",\"PeriodicalId\":20685,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3106426.3106537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3106426.3106537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A flexible framework to cross-analyze heterogeneous multi-source geo-referenced information: the J-CO-QL proposal and its implementation
The need for cross-analyzing JSON objects representing heterogeneous geo-referenced information coming from multiple sources, such as open data published on the Web by public administrations and crowd-sourced posts and images from social networks, is becoming common for studying, predicting and planning social dynamics. Nevertheless, although NoSQL databases have emerged as a de facto standard means to store JSON objects, a query language that can be easily used by not-programmers to manipulate and correlate such data is still missing. Furthermore, when the information is geo-referenced, we also need both spatial analysis and mapping facilities. In the paper, we motivate the need for a novel flexible framework, named J-CO, that provides a query language, named J-CO-QL, enabling novel declarative (spatial) queries for JSON objects. We will illustrate the basic concepts of the proposal and the possible use of its spatial and non-spatial operators for cross-analyzing open data and crowd-sourced information. This framework is powered by a plug-in for QGIS that can be used to write and execute queries on MongoDB databases.