{"title":"基于自动学习稀疏逆协方差矩阵的低资源语音识别","authors":"Weibin Zhang, Pascale Fung","doi":"10.1109/ICASSP.2012.6288977","DOIUrl":null,"url":null,"abstract":"Full covariance acoustic models trained with limited training data generalize poorly to unseen test data due to a large number of free parameters. We propose to use sparse inverse covariance matrices to address this problem. Previous sparse inverse covariance methods never outperformed full covariance methods. We propose a method to automatically drive the structure of inverse covariance matrices to sparse during training. We use a new objective function by adding L1 regularization to the traditional objective function for maximum likelihood estimation. The graphic lasso method for the estimation of a sparse inverse covariance matrix is incorporated into the Expectation Maximization algorithm to learn parameters of HMM using the new objective function. Experimental results show that we only need about 25% of the parameters of the inverse covariance matrices to be nonzero in order to achieve the same performance of a full covariance system. Our proposed system using sparse inverse covariance Gaussians also significantly outperforms a system using full covariance Gaussians trained on limited data.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Lowresource speech recognition with automatically learned sparse inverse covariance matrices\",\"authors\":\"Weibin Zhang, Pascale Fung\",\"doi\":\"10.1109/ICASSP.2012.6288977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Full covariance acoustic models trained with limited training data generalize poorly to unseen test data due to a large number of free parameters. We propose to use sparse inverse covariance matrices to address this problem. Previous sparse inverse covariance methods never outperformed full covariance methods. We propose a method to automatically drive the structure of inverse covariance matrices to sparse during training. We use a new objective function by adding L1 regularization to the traditional objective function for maximum likelihood estimation. The graphic lasso method for the estimation of a sparse inverse covariance matrix is incorporated into the Expectation Maximization algorithm to learn parameters of HMM using the new objective function. Experimental results show that we only need about 25% of the parameters of the inverse covariance matrices to be nonzero in order to achieve the same performance of a full covariance system. Our proposed system using sparse inverse covariance Gaussians also significantly outperforms a system using full covariance Gaussians trained on limited data.\",\"PeriodicalId\":6443,\"journal\":{\"name\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2012.6288977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lowresource speech recognition with automatically learned sparse inverse covariance matrices
Full covariance acoustic models trained with limited training data generalize poorly to unseen test data due to a large number of free parameters. We propose to use sparse inverse covariance matrices to address this problem. Previous sparse inverse covariance methods never outperformed full covariance methods. We propose a method to automatically drive the structure of inverse covariance matrices to sparse during training. We use a new objective function by adding L1 regularization to the traditional objective function for maximum likelihood estimation. The graphic lasso method for the estimation of a sparse inverse covariance matrix is incorporated into the Expectation Maximization algorithm to learn parameters of HMM using the new objective function. Experimental results show that we only need about 25% of the parameters of the inverse covariance matrices to be nonzero in order to achieve the same performance of a full covariance system. Our proposed system using sparse inverse covariance Gaussians also significantly outperforms a system using full covariance Gaussians trained on limited data.