D. K. Chaudhary, Yogesh Singh Maharjan, Sanju Shrestha, Surendra Maharjan, S. Shrestha, L. Joshi
{"title":"基于zno的氨传感器的传感性能研究","authors":"D. K. Chaudhary, Yogesh Singh Maharjan, Sanju Shrestha, Surendra Maharjan, S. Shrestha, L. Joshi","doi":"10.21315/jps2022.33.1.7","DOIUrl":null,"url":null,"abstract":"Monitoring and remediation of toxic and flammable gases have become a critical task for the development of a clean society. Among various types of metal oxide semiconductors (MOS), zinc oxide (ZnO) is considered a potential material for gas sensing application because of its high sensitivity, easy synthesis, and high thermal stability behaviours. This research aimed to gain an in-depth understanding of the sensing task of a very stable and porous thin film of spin coated ZnO for detecting toxic ammonia vapour at room temperature. As-prepared ZnO films were characterised by x-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet-visible (UV-vis) analyses. XRD and SEM results revealed the polycrystalline wurtzite ZnO phase with grainy surface morphology. Optical calculations quantify the direct band gap of ZnO as 3.2 eV. The sensitivity measurements showed a good response ratio of 38.5 ± 0.6 with an exposure of 400 ppm of ammonia vapour. The results on sensitivity measurement of several cycles illustrated its stability and sensing performance better than other reported similar works. These findings will be useful to develop a low cost and efficient room temperature MOS gas sensor that can efficiently detect extremely low concentrations as 20 ppm of ammonia vapour which is below the Occupational Safety and Health Administration (OSHA) recommended value.","PeriodicalId":16757,"journal":{"name":"Journal of Physical Science","volume":"29 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Sensing Performance of a ZnO-based Ammonia Sensor\",\"authors\":\"D. K. Chaudhary, Yogesh Singh Maharjan, Sanju Shrestha, Surendra Maharjan, S. Shrestha, L. Joshi\",\"doi\":\"10.21315/jps2022.33.1.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring and remediation of toxic and flammable gases have become a critical task for the development of a clean society. Among various types of metal oxide semiconductors (MOS), zinc oxide (ZnO) is considered a potential material for gas sensing application because of its high sensitivity, easy synthesis, and high thermal stability behaviours. This research aimed to gain an in-depth understanding of the sensing task of a very stable and porous thin film of spin coated ZnO for detecting toxic ammonia vapour at room temperature. As-prepared ZnO films were characterised by x-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet-visible (UV-vis) analyses. XRD and SEM results revealed the polycrystalline wurtzite ZnO phase with grainy surface morphology. Optical calculations quantify the direct band gap of ZnO as 3.2 eV. The sensitivity measurements showed a good response ratio of 38.5 ± 0.6 with an exposure of 400 ppm of ammonia vapour. The results on sensitivity measurement of several cycles illustrated its stability and sensing performance better than other reported similar works. These findings will be useful to develop a low cost and efficient room temperature MOS gas sensor that can efficiently detect extremely low concentrations as 20 ppm of ammonia vapour which is below the Occupational Safety and Health Administration (OSHA) recommended value.\",\"PeriodicalId\":16757,\"journal\":{\"name\":\"Journal of Physical Science\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21315/jps2022.33.1.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21315/jps2022.33.1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Monitoring and remediation of toxic and flammable gases have become a critical task for the development of a clean society. Among various types of metal oxide semiconductors (MOS), zinc oxide (ZnO) is considered a potential material for gas sensing application because of its high sensitivity, easy synthesis, and high thermal stability behaviours. This research aimed to gain an in-depth understanding of the sensing task of a very stable and porous thin film of spin coated ZnO for detecting toxic ammonia vapour at room temperature. As-prepared ZnO films were characterised by x-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet-visible (UV-vis) analyses. XRD and SEM results revealed the polycrystalline wurtzite ZnO phase with grainy surface morphology. Optical calculations quantify the direct band gap of ZnO as 3.2 eV. The sensitivity measurements showed a good response ratio of 38.5 ± 0.6 with an exposure of 400 ppm of ammonia vapour. The results on sensitivity measurement of several cycles illustrated its stability and sensing performance better than other reported similar works. These findings will be useful to develop a low cost and efficient room temperature MOS gas sensor that can efficiently detect extremely low concentrations as 20 ppm of ammonia vapour which is below the Occupational Safety and Health Administration (OSHA) recommended value.
期刊介绍:
The aim of the journal is to disseminate latest scientific ideas and findings in the field of physical sciences among scientists in Malaysia and international regions. This journal is devoted to the publication of articles dealing with research works in Chemistry, Physics and Engineering. Review articles will also be considered. Manuscripts must be of scientific value and will be submitted to independent referees for review. Contributions must be written in English and must not have been published elsewhere.