提高太阳能电池效率的金纳米粒子- pvp基涂层

Ian Sear, Marine Gasulla, A. Alemu, A. Freundlich
{"title":"提高太阳能电池效率的金纳米粒子- pvp基涂层","authors":"Ian Sear, Marine Gasulla, A. Alemu, A. Freundlich","doi":"10.1109/PVSC.2010.5614541","DOIUrl":null,"url":null,"abstract":"In this work we report on the optimization of a simple-spin coating technique using solution based Au colloidal nanoparticles and polyvinylpyrrolidone (PVP) and evaluate the potential for improving the efficiency of thin-base (<1 micron) conventional p/n GaAs and InP/InAsP multi quantum well (MQW) p-i-n solar cells. Optical properties of the coatings are analyzed by reflectance spectroscopy and spectroscopic ellipsometry. It is experimentally demonstrated that the approach yields to a remarkable improvement of the performance of studied devices. Quantum efficiency and reflectance analysis show an increase of the near-band edge and below bandgap (MQW) conversion efficiencies as well as a decrease of overall reflection losses. The proposed process is shown to be reversible (possibility of non-intrusive solvent based coating removal) and capable of improving device current outputs and fill factors. Significant AM0 efficiency increases for the conventional GaAs p/n and InP p-MQW-n devices are recorded both for samples coated with AuNP-PVP and PVP. However analysis indicate that the main improvement in IV characteristics is to be associated with a PVP related antireflect-coating effect.","PeriodicalId":6424,"journal":{"name":"2010 35th IEEE Photovoltaic Specialists Conference","volume":"54 1","pages":"002916-002918"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gold nanoparticle-PVP based coating for efficiency enhancement of solar cells\",\"authors\":\"Ian Sear, Marine Gasulla, A. Alemu, A. Freundlich\",\"doi\":\"10.1109/PVSC.2010.5614541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we report on the optimization of a simple-spin coating technique using solution based Au colloidal nanoparticles and polyvinylpyrrolidone (PVP) and evaluate the potential for improving the efficiency of thin-base (<1 micron) conventional p/n GaAs and InP/InAsP multi quantum well (MQW) p-i-n solar cells. Optical properties of the coatings are analyzed by reflectance spectroscopy and spectroscopic ellipsometry. It is experimentally demonstrated that the approach yields to a remarkable improvement of the performance of studied devices. Quantum efficiency and reflectance analysis show an increase of the near-band edge and below bandgap (MQW) conversion efficiencies as well as a decrease of overall reflection losses. The proposed process is shown to be reversible (possibility of non-intrusive solvent based coating removal) and capable of improving device current outputs and fill factors. Significant AM0 efficiency increases for the conventional GaAs p/n and InP p-MQW-n devices are recorded both for samples coated with AuNP-PVP and PVP. However analysis indicate that the main improvement in IV characteristics is to be associated with a PVP related antireflect-coating effect.\",\"PeriodicalId\":6424,\"journal\":{\"name\":\"2010 35th IEEE Photovoltaic Specialists Conference\",\"volume\":\"54 1\",\"pages\":\"002916-002918\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 35th IEEE Photovoltaic Specialists Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2010.5614541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 35th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2010.5614541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们报告了一种基于溶液的金胶体纳米颗粒和聚乙烯吡咯烷酮(PVP)的简单自旋涂层技术的优化,并评估了提高薄基(<1微米)传统p/n GaAs和InP/InAsP多量子阱(MQW) p-i-n太阳能电池效率的潜力。利用反射光谱和椭偏光谱分析了涂层的光学性能。实验证明,该方法能显著提高所研究器件的性能。量子效率和反射率分析表明,近带边缘和带隙以下(MQW)转换效率增加,总反射损耗减少。所提出的工艺被证明是可逆的(非侵入性溶剂基涂层去除的可能性),并且能够改善器件电流输出和填充因子。传统的GaAs p/n和InP p- mqw -n器件的AM0效率显著提高,对于涂覆AuNP-PVP和PVP的样品都有记录。然而,分析表明,IV特性的主要改善与PVP相关的抗反射涂层效应有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gold nanoparticle-PVP based coating for efficiency enhancement of solar cells
In this work we report on the optimization of a simple-spin coating technique using solution based Au colloidal nanoparticles and polyvinylpyrrolidone (PVP) and evaluate the potential for improving the efficiency of thin-base (<1 micron) conventional p/n GaAs and InP/InAsP multi quantum well (MQW) p-i-n solar cells. Optical properties of the coatings are analyzed by reflectance spectroscopy and spectroscopic ellipsometry. It is experimentally demonstrated that the approach yields to a remarkable improvement of the performance of studied devices. Quantum efficiency and reflectance analysis show an increase of the near-band edge and below bandgap (MQW) conversion efficiencies as well as a decrease of overall reflection losses. The proposed process is shown to be reversible (possibility of non-intrusive solvent based coating removal) and capable of improving device current outputs and fill factors. Significant AM0 efficiency increases for the conventional GaAs p/n and InP p-MQW-n devices are recorded both for samples coated with AuNP-PVP and PVP. However analysis indicate that the main improvement in IV characteristics is to be associated with a PVP related antireflect-coating effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信