在培养基中直接添加重组胶原I肽增强人间充质间质细胞的粘附和增殖

Q2 Biochemistry, Genetics and Molecular Biology
K. Muraya, Tomoyuki Kawasaki, Takeshi Yamamoto, H. Akutsu
{"title":"在培养基中直接添加重组胶原I肽增强人间充质间质细胞的粘附和增殖","authors":"K. Muraya, Tomoyuki Kawasaki, Takeshi Yamamoto, H. Akutsu","doi":"10.1089/biores.2019.0012","DOIUrl":null,"url":null,"abstract":"Abstract Mesenchymal stromal cells (MSCs) have considerable potential for a wide range of clinical applications and regenerative medicine and cell therapy. As a consequence, there is considerable interest in developing robust culture methods for producing large number of MSCs for use in repair of injured tissues or treatment of diseases. In general, tissue culture plates or flasks that have been precoated with substrates derived from animal tissues are used in the production of MSCs. However, these substrates can potentially cause serious problems due to contamination of the MSCs with animal-derived components. In this study, we evaluated the use of a type I collagen-based recombinant peptide (RCP) for MSC culture in an attempt to avoid the problems associated with animal cell-derived substances. This RCP is xeno free, has an increased RGD (Arg–Gly–Asp) sequence, and has high molecular weight uniformity. The effect of RCP on promotion of cellular adhesion and proliferation of MSCs was investigated in cultures in which RCP was included in the culture medium. The effects of RCP on promotion of cellular adhesion and proliferation of MSCs were investigated by comparing cultures in which the additive was present in the culture medium and those where the culture plates were coated with RCP. In addition, changes in gene expression profiles during cell culture were monitored by real time-polymerase chain reaction. Our analyses showed that RCP enhanced cellular adhesion and proliferation in cultures in which the additive was included in the culture medium. Our findings indicate that adding RCP to the culture medium could save time and cost in MSC culture. Our gene expression analysis indicated that RCP enhanced expression of genes encoding proteins associated with the extracellular matrix and cell adhesion.","PeriodicalId":9100,"journal":{"name":"BioResearch Open Access","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Enhancement of Cellular Adhesion and Proliferation in Human Mesenchymal Stromal Cells by the Direct Addition of Recombinant Collagen I Peptide to the Culture Medium\",\"authors\":\"K. Muraya, Tomoyuki Kawasaki, Takeshi Yamamoto, H. Akutsu\",\"doi\":\"10.1089/biores.2019.0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Mesenchymal stromal cells (MSCs) have considerable potential for a wide range of clinical applications and regenerative medicine and cell therapy. As a consequence, there is considerable interest in developing robust culture methods for producing large number of MSCs for use in repair of injured tissues or treatment of diseases. In general, tissue culture plates or flasks that have been precoated with substrates derived from animal tissues are used in the production of MSCs. However, these substrates can potentially cause serious problems due to contamination of the MSCs with animal-derived components. In this study, we evaluated the use of a type I collagen-based recombinant peptide (RCP) for MSC culture in an attempt to avoid the problems associated with animal cell-derived substances. This RCP is xeno free, has an increased RGD (Arg–Gly–Asp) sequence, and has high molecular weight uniformity. The effect of RCP on promotion of cellular adhesion and proliferation of MSCs was investigated in cultures in which RCP was included in the culture medium. The effects of RCP on promotion of cellular adhesion and proliferation of MSCs were investigated by comparing cultures in which the additive was present in the culture medium and those where the culture plates were coated with RCP. In addition, changes in gene expression profiles during cell culture were monitored by real time-polymerase chain reaction. Our analyses showed that RCP enhanced cellular adhesion and proliferation in cultures in which the additive was included in the culture medium. Our findings indicate that adding RCP to the culture medium could save time and cost in MSC culture. Our gene expression analysis indicated that RCP enhanced expression of genes encoding proteins associated with the extracellular matrix and cell adhesion.\",\"PeriodicalId\":9100,\"journal\":{\"name\":\"BioResearch Open Access\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioResearch Open Access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/biores.2019.0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioResearch Open Access","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/biores.2019.0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 10

摘要

间充质基质细胞(MSCs)具有广泛的临床应用和再生医学和细胞治疗的巨大潜力。因此,人们对开发强大的培养方法产生大量用于损伤组织修复或疾病治疗的间充质干细胞非常感兴趣。一般来说,组织培养板或烧瓶预先涂有来自动物组织的底物,用于生产间充质干细胞。然而,由于动物源性成分污染了间充质干细胞,这些基质可能会导致严重的问题。在这项研究中,我们评估了I型胶原基重组肽(RCP)用于间充质干细胞培养的使用,试图避免与动物细胞来源物质相关的问题。该RCP不含xeno, RGD (Arg-Gly-Asp)序列增加,分子量均匀性高。在培养基中加入RCP的培养基中,研究了RCP对MSCs细胞粘附和增殖的促进作用。通过比较在培养基中添加RCP和在培养板上涂覆RCP的培养,研究了RCP对MSCs细胞粘附和增殖的促进作用。此外,通过实时聚合酶链反应监测细胞培养过程中基因表达谱的变化。我们的分析表明,在培养基中加入RCP添加剂的培养基中,RCP增强了细胞的粘附和增殖。我们的研究结果表明,在培养基中添加RCP可以节省MSC培养的时间和成本。我们的基因表达分析表明,RCP增强了与细胞外基质和细胞粘附相关的编码蛋白的基因表达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement of Cellular Adhesion and Proliferation in Human Mesenchymal Stromal Cells by the Direct Addition of Recombinant Collagen I Peptide to the Culture Medium
Abstract Mesenchymal stromal cells (MSCs) have considerable potential for a wide range of clinical applications and regenerative medicine and cell therapy. As a consequence, there is considerable interest in developing robust culture methods for producing large number of MSCs for use in repair of injured tissues or treatment of diseases. In general, tissue culture plates or flasks that have been precoated with substrates derived from animal tissues are used in the production of MSCs. However, these substrates can potentially cause serious problems due to contamination of the MSCs with animal-derived components. In this study, we evaluated the use of a type I collagen-based recombinant peptide (RCP) for MSC culture in an attempt to avoid the problems associated with animal cell-derived substances. This RCP is xeno free, has an increased RGD (Arg–Gly–Asp) sequence, and has high molecular weight uniformity. The effect of RCP on promotion of cellular adhesion and proliferation of MSCs was investigated in cultures in which RCP was included in the culture medium. The effects of RCP on promotion of cellular adhesion and proliferation of MSCs were investigated by comparing cultures in which the additive was present in the culture medium and those where the culture plates were coated with RCP. In addition, changes in gene expression profiles during cell culture were monitored by real time-polymerase chain reaction. Our analyses showed that RCP enhanced cellular adhesion and proliferation in cultures in which the additive was included in the culture medium. Our findings indicate that adding RCP to the culture medium could save time and cost in MSC culture. Our gene expression analysis indicated that RCP enhanced expression of genes encoding proteins associated with the extracellular matrix and cell adhesion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioResearch Open Access
BioResearch Open Access Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
自引率
0.00%
发文量
1
期刊介绍: BioResearch Open Access is a high-quality open access journal providing peer-reviewed research on a broad range of scientific topics, including molecular and cellular biology, tissue engineering, regenerative medicine, stem cells, gene therapy, systems biology, genetics, virology, and neuroscience. The Journal publishes basic science and translational research in the form of original research articles, comprehensive review articles, mini-reviews, rapid communications, brief reports, technology reports, hypothesis articles, perspectives, and letters to the editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信