$m$-准-$*$-爱因斯坦接触度量流形

IF 1 Q1 MATHEMATICS
H. Kumara, V. Venkatesha, D. Naik
{"title":"$m$-准-$*$-爱因斯坦接触度量流形","authors":"H. Kumara, V. Venkatesha, D. Naik","doi":"10.15330/cmp.14.1.61-71","DOIUrl":null,"url":null,"abstract":"The goal of this article is to introduce and study the characterstics of $m$-quasi-$*$-Einstein metric on contact Riemannian manifolds. First, we prove that if a Sasakian manifold admits a gradient $m$-quasi-$*$-Einstein metric, then $M$ is $\\eta$-Einstein and $f$ is constant. Next, we show that in a Sasakian manifold if $g$ represents an $m$-quasi-$*$-Einstein metric with a conformal vector field $V$, then $V$ is Killing and $M$ is $\\eta$-Einstein. Finally, we prove that if a non-Sasakian $(\\kappa,\\mu)$-contact manifold admits a gradient $m$-quasi-$*$-Einstein metric, then it is $N(\\kappa)$-contact metric manifold or a $*$-Einstein.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$m$-quasi-$*$-Einstein contact metric manifolds\",\"authors\":\"H. Kumara, V. Venkatesha, D. Naik\",\"doi\":\"10.15330/cmp.14.1.61-71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this article is to introduce and study the characterstics of $m$-quasi-$*$-Einstein metric on contact Riemannian manifolds. First, we prove that if a Sasakian manifold admits a gradient $m$-quasi-$*$-Einstein metric, then $M$ is $\\\\eta$-Einstein and $f$ is constant. Next, we show that in a Sasakian manifold if $g$ represents an $m$-quasi-$*$-Einstein metric with a conformal vector field $V$, then $V$ is Killing and $M$ is $\\\\eta$-Einstein. Finally, we prove that if a non-Sasakian $(\\\\kappa,\\\\mu)$-contact manifold admits a gradient $m$-quasi-$*$-Einstein metric, then it is $N(\\\\kappa)$-contact metric manifold or a $*$-Einstein.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.14.1.61-71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.1.61-71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是介绍和研究接触黎曼流形上$m$ -拟$*$ -爱因斯坦度规的特性。首先,我们证明了如果Sasakian流形存在一个梯度$m$ -拟$*$ - einstein度量,则$M$为$\eta$ - einstein, $f$为常数。接下来,我们证明了在Sasakian流形中,如果$g$表示具有保形向量场$V$的$m$ -拟- $*$ -爱因斯坦度量,则$V$是Killing, $M$是$\eta$ - einstein。最后,我们证明了如果一个非sasakian $(\kappa,\mu)$ -接触流形存在一个梯度$m$ -拟- $*$ -爱因斯坦度量,那么它就是$N(\kappa)$ -接触度量流形或$*$ -爱因斯坦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$m$-quasi-$*$-Einstein contact metric manifolds
The goal of this article is to introduce and study the characterstics of $m$-quasi-$*$-Einstein metric on contact Riemannian manifolds. First, we prove that if a Sasakian manifold admits a gradient $m$-quasi-$*$-Einstein metric, then $M$ is $\eta$-Einstein and $f$ is constant. Next, we show that in a Sasakian manifold if $g$ represents an $m$-quasi-$*$-Einstein metric with a conformal vector field $V$, then $V$ is Killing and $M$ is $\eta$-Einstein. Finally, we prove that if a non-Sasakian $(\kappa,\mu)$-contact manifold admits a gradient $m$-quasi-$*$-Einstein metric, then it is $N(\kappa)$-contact metric manifold or a $*$-Einstein.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信