{"title":"广义偏态拉普拉斯随机场:偏态和重尾数据的贝叶斯空间预测","authors":"M. M. Saber, A. Nematollahi, M. Mohammadzadeh","doi":"10.2991/JSTA.D.210111.001","DOIUrl":null,"url":null,"abstract":"Earlier works on spatial prediction issue often assume that the spatial data are realization of Gaussian random field. However, this assumption is not applicable to the skewed and kurtosis distributed data. The closed skew normal distribution has been used in these circumstances. As another alternative, we apply generalized skew Laplace distributions for defining a skew and heavy tailed random field for Bayesian prediction. Simulation study and a real problem are then applied to evaluate the performance of this model.","PeriodicalId":45080,"journal":{"name":"Journal of Statistical Theory and Applications","volume":"30 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalized Skew Laplace Random Fields: Bayesian Spatial Prediction for Skew and Heavy Tailed Data\",\"authors\":\"M. M. Saber, A. Nematollahi, M. Mohammadzadeh\",\"doi\":\"10.2991/JSTA.D.210111.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Earlier works on spatial prediction issue often assume that the spatial data are realization of Gaussian random field. However, this assumption is not applicable to the skewed and kurtosis distributed data. The closed skew normal distribution has been used in these circumstances. As another alternative, we apply generalized skew Laplace distributions for defining a skew and heavy tailed random field for Bayesian prediction. Simulation study and a real problem are then applied to evaluate the performance of this model.\",\"PeriodicalId\":45080,\"journal\":{\"name\":\"Journal of Statistical Theory and Applications\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/JSTA.D.210111.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/JSTA.D.210111.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Generalized Skew Laplace Random Fields: Bayesian Spatial Prediction for Skew and Heavy Tailed Data
Earlier works on spatial prediction issue often assume that the spatial data are realization of Gaussian random field. However, this assumption is not applicable to the skewed and kurtosis distributed data. The closed skew normal distribution has been used in these circumstances. As another alternative, we apply generalized skew Laplace distributions for defining a skew and heavy tailed random field for Bayesian prediction. Simulation study and a real problem are then applied to evaluate the performance of this model.