深度神经网络眼中的观光

Seyran Khademi, Xiangwei Shi, Tino Mager, R. Siebes, C. Hein, V. D. Boer, J. V. Gemert
{"title":"深度神经网络眼中的观光","authors":"Seyran Khademi, Xiangwei Shi, Tino Mager, R. Siebes, C. Hein, V. D. Boer, J. V. Gemert","doi":"10.1109/eScience.2018.00125","DOIUrl":null,"url":null,"abstract":"We address the interpretability of convolutional neural networks (CNNs) for predicting a geo-location from an image. In a pilot experiment we classify images of Pittsburgh vs Tokyo and visualize the learned CNN filters. We found that varying the CNN architecture leads to variating in the visualized filters. This calls for further investigation of the effective parameters on the interpretability of CNNs.","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"107 1","pages":"407-408"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sight-Seeing in the Eyes of Deep Neural Networks\",\"authors\":\"Seyran Khademi, Xiangwei Shi, Tino Mager, R. Siebes, C. Hein, V. D. Boer, J. V. Gemert\",\"doi\":\"10.1109/eScience.2018.00125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the interpretability of convolutional neural networks (CNNs) for predicting a geo-location from an image. In a pilot experiment we classify images of Pittsburgh vs Tokyo and visualize the learned CNN filters. We found that varying the CNN architecture leads to variating in the visualized filters. This calls for further investigation of the effective parameters on the interpretability of CNNs.\",\"PeriodicalId\":6476,\"journal\":{\"name\":\"2018 IEEE 14th International Conference on e-Science (e-Science)\",\"volume\":\"107 1\",\"pages\":\"407-408\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 14th International Conference on e-Science (e-Science)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eScience.2018.00125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on e-Science (e-Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2018.00125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们解决了卷积神经网络(cnn)从图像预测地理位置的可解释性。在一个试点实验中,我们对匹兹堡和东京的图像进行分类,并将学习到的CNN过滤器可视化。我们发现,改变CNN架构会导致可视化滤波器的变化。这就需要进一步研究影响cnn可解释性的有效参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sight-Seeing in the Eyes of Deep Neural Networks
We address the interpretability of convolutional neural networks (CNNs) for predicting a geo-location from an image. In a pilot experiment we classify images of Pittsburgh vs Tokyo and visualize the learned CNN filters. We found that varying the CNN architecture leads to variating in the visualized filters. This calls for further investigation of the effective parameters on the interpretability of CNNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信