{"title":"将跟踪传感器技术集成到建筑物和结构的信息建模中","authors":"Tatyana A. Sivak, Pauline Yu. Kvasha","doi":"10.22227/2305-5502.2019.4.1","DOIUrl":null,"url":null,"abstract":"Introduction. The issue of communication of information model of structure with real building is under consideration. This matter includes damage and various impacts both inside and outside the building tracking tools and techniques. With the help of the adoption of information modeling technologies in the Russian construction industry, maintenance and reconstruction of structures will reach a new level. For this purpose, it is necessary to understand the technology of communication of the information model with the real building, which is carried out by means of nanosensors installed throughout the structure.\n\nMaterials and Methods. Available research papers about integration of BIM into the process of real construction are analyzed and the urgency and necessity of development of the given industry in the modern world are proved.\n\nResults. Application of information model in reconstruction of architectural engineering sites is investigated. The technique of real model scanning of a building for the creation of information model is presented. The examples of nanosensors use for synchronization of the real construction site with its information model are given. The importance of orientation in the building using GIS and BIM communication has been established. In this review, I would like to show the importance of information modeling for Russia.\n\nConclusions. The opportunity to combine such technologies as photogrammetry, laser scanning and ReCap software features with automated monitoring of images taken from various devices is presented. It was concluded that it is possible to integrate a single information field into the area of laser scanning and the area of combination of technologies of detection and determination of light range and BIM construction. It is proposed to combine technologies of detection and cloud access to information models with radio-frequency identifiers. Possibility of integration of three technologies is revealed: BLE-sensors, RFID-scanners and automated image monitoring in the area of BIM damage assessment after earthquakes.","PeriodicalId":22024,"journal":{"name":"Stroitel stvo nauka i obrazovanie [Construction Science and Education]","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of tracking sensor technology into the information modeling of buildings and structures\",\"authors\":\"Tatyana A. Sivak, Pauline Yu. Kvasha\",\"doi\":\"10.22227/2305-5502.2019.4.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. The issue of communication of information model of structure with real building is under consideration. This matter includes damage and various impacts both inside and outside the building tracking tools and techniques. With the help of the adoption of information modeling technologies in the Russian construction industry, maintenance and reconstruction of structures will reach a new level. For this purpose, it is necessary to understand the technology of communication of the information model with the real building, which is carried out by means of nanosensors installed throughout the structure.\\n\\nMaterials and Methods. Available research papers about integration of BIM into the process of real construction are analyzed and the urgency and necessity of development of the given industry in the modern world are proved.\\n\\nResults. Application of information model in reconstruction of architectural engineering sites is investigated. The technique of real model scanning of a building for the creation of information model is presented. The examples of nanosensors use for synchronization of the real construction site with its information model are given. The importance of orientation in the building using GIS and BIM communication has been established. In this review, I would like to show the importance of information modeling for Russia.\\n\\nConclusions. The opportunity to combine such technologies as photogrammetry, laser scanning and ReCap software features with automated monitoring of images taken from various devices is presented. It was concluded that it is possible to integrate a single information field into the area of laser scanning and the area of combination of technologies of detection and determination of light range and BIM construction. It is proposed to combine technologies of detection and cloud access to information models with radio-frequency identifiers. Possibility of integration of three technologies is revealed: BLE-sensors, RFID-scanners and automated image monitoring in the area of BIM damage assessment after earthquakes.\",\"PeriodicalId\":22024,\"journal\":{\"name\":\"Stroitel stvo nauka i obrazovanie [Construction Science and Education]\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stroitel stvo nauka i obrazovanie [Construction Science and Education]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22227/2305-5502.2019.4.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stroitel stvo nauka i obrazovanie [Construction Science and Education]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22227/2305-5502.2019.4.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integration of tracking sensor technology into the information modeling of buildings and structures
Introduction. The issue of communication of information model of structure with real building is under consideration. This matter includes damage and various impacts both inside and outside the building tracking tools and techniques. With the help of the adoption of information modeling technologies in the Russian construction industry, maintenance and reconstruction of structures will reach a new level. For this purpose, it is necessary to understand the technology of communication of the information model with the real building, which is carried out by means of nanosensors installed throughout the structure.
Materials and Methods. Available research papers about integration of BIM into the process of real construction are analyzed and the urgency and necessity of development of the given industry in the modern world are proved.
Results. Application of information model in reconstruction of architectural engineering sites is investigated. The technique of real model scanning of a building for the creation of information model is presented. The examples of nanosensors use for synchronization of the real construction site with its information model are given. The importance of orientation in the building using GIS and BIM communication has been established. In this review, I would like to show the importance of information modeling for Russia.
Conclusions. The opportunity to combine such technologies as photogrammetry, laser scanning and ReCap software features with automated monitoring of images taken from various devices is presented. It was concluded that it is possible to integrate a single information field into the area of laser scanning and the area of combination of technologies of detection and determination of light range and BIM construction. It is proposed to combine technologies of detection and cloud access to information models with radio-frequency identifiers. Possibility of integration of three technologies is revealed: BLE-sensors, RFID-scanners and automated image monitoring in the area of BIM damage assessment after earthquakes.