基于大脑双通道加工的动态场景视觉注意模型

Jiawei Chen, Changle Zhou, Kunhui Lin, Yanyun Qu
{"title":"基于大脑双通道加工的动态场景视觉注意模型","authors":"Jiawei Chen, Changle Zhou, Kunhui Lin, Yanyun Qu","doi":"10.1109/ICNC.2008.392","DOIUrl":null,"url":null,"abstract":"In this paper, a visual attention model for dynamic scenes based on two-pathway processing in brain is proposed. A saliency map is created to measure the static features, and a motion conspicuity map is created to measure the dynamic feature. Both maps are integrated in an IFNN which is employed to simulate the interactive aspects of two-pathway processing in brain. Selection of attention is accomplished by the interspike interval of the neural network. The experiments results show the effective and efficient performance of the model.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"1 1","pages":"128-132"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Visual Attention Model for Dynamic Scenes Based on Two-Pathway Processing in Brain\",\"authors\":\"Jiawei Chen, Changle Zhou, Kunhui Lin, Yanyun Qu\",\"doi\":\"10.1109/ICNC.2008.392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a visual attention model for dynamic scenes based on two-pathway processing in brain is proposed. A saliency map is created to measure the static features, and a motion conspicuity map is created to measure the dynamic feature. Both maps are integrated in an IFNN which is employed to simulate the interactive aspects of two-pathway processing in brain. Selection of attention is accomplished by the interspike interval of the neural network. The experiments results show the effective and efficient performance of the model.\",\"PeriodicalId\":6404,\"journal\":{\"name\":\"2008 Fourth International Conference on Natural Computation\",\"volume\":\"1 1\",\"pages\":\"128-132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Fourth International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2008.392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于大脑双通道加工的动态场景视觉注意模型。创建显著性图来测量静态特征,创建运动显著性图来测量动态特征。这两个图被整合到IFNN中,用来模拟大脑中双通路处理的交互方面。注意的选择是通过神经网络的峰间间隔来完成的。实验结果表明了该模型的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Visual Attention Model for Dynamic Scenes Based on Two-Pathway Processing in Brain
In this paper, a visual attention model for dynamic scenes based on two-pathway processing in brain is proposed. A saliency map is created to measure the static features, and a motion conspicuity map is created to measure the dynamic feature. Both maps are integrated in an IFNN which is employed to simulate the interactive aspects of two-pathway processing in brain. Selection of attention is accomplished by the interspike interval of the neural network. The experiments results show the effective and efficient performance of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信