{"title":"3-Sasaki结构的特征值估计","authors":"P. Nagy, U. Semmelmann","doi":"10.1515/crelle-2023-0044","DOIUrl":null,"url":null,"abstract":"Abstract We obtain new lower bounds for the first non-zero eigenvalue of the scalar sub-Laplacian for 3-Sasaki metrics, improving the Lichnerowicz–Obata-type estimates by Ivanov, Petkov and Vassilev (2013, 2014). The limiting eigenspace is fully described in terms of the automorphism algebra. Our results can be thought of as an analogue of the Lichnerowicz–Matsushima estimate for Kähler–Einstein metrics. In dimension 7, if the automorphism algebra is non-vanishing, we also compute the second eigenvalue for the sub-Laplacian and construct explicit eigenfunctions. In addition, for all metrics in the canonical variation of the 3-Sasaki metric we give a lower bound for the spectrum of the Riemannian Laplace operator, depending only on scalar curvature and dimension. We also strengthen a result pertaining to the growth rate of harmonic functions, due to Conlon, Hein and Sun (2013, 2017), in the case of hyperkähler cones. In this setup we also describe the space of holomorphic functions.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"16 1","pages":"35 - 60"},"PeriodicalIF":1.2000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Eigenvalue estimates for 3-Sasaki structures\",\"authors\":\"P. Nagy, U. Semmelmann\",\"doi\":\"10.1515/crelle-2023-0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We obtain new lower bounds for the first non-zero eigenvalue of the scalar sub-Laplacian for 3-Sasaki metrics, improving the Lichnerowicz–Obata-type estimates by Ivanov, Petkov and Vassilev (2013, 2014). The limiting eigenspace is fully described in terms of the automorphism algebra. Our results can be thought of as an analogue of the Lichnerowicz–Matsushima estimate for Kähler–Einstein metrics. In dimension 7, if the automorphism algebra is non-vanishing, we also compute the second eigenvalue for the sub-Laplacian and construct explicit eigenfunctions. In addition, for all metrics in the canonical variation of the 3-Sasaki metric we give a lower bound for the spectrum of the Riemannian Laplace operator, depending only on scalar curvature and dimension. We also strengthen a result pertaining to the growth rate of harmonic functions, due to Conlon, Hein and Sun (2013, 2017), in the case of hyperkähler cones. In this setup we also describe the space of holomorphic functions.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":\"16 1\",\"pages\":\"35 - 60\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2023-0044\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0044","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract We obtain new lower bounds for the first non-zero eigenvalue of the scalar sub-Laplacian for 3-Sasaki metrics, improving the Lichnerowicz–Obata-type estimates by Ivanov, Petkov and Vassilev (2013, 2014). The limiting eigenspace is fully described in terms of the automorphism algebra. Our results can be thought of as an analogue of the Lichnerowicz–Matsushima estimate for Kähler–Einstein metrics. In dimension 7, if the automorphism algebra is non-vanishing, we also compute the second eigenvalue for the sub-Laplacian and construct explicit eigenfunctions. In addition, for all metrics in the canonical variation of the 3-Sasaki metric we give a lower bound for the spectrum of the Riemannian Laplace operator, depending only on scalar curvature and dimension. We also strengthen a result pertaining to the growth rate of harmonic functions, due to Conlon, Hein and Sun (2013, 2017), in the case of hyperkähler cones. In this setup we also describe the space of holomorphic functions.
期刊介绍:
The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.