3-Sasaki结构的特征值估计

IF 1.2 1区 数学 Q1 MATHEMATICS
P. Nagy, U. Semmelmann
{"title":"3-Sasaki结构的特征值估计","authors":"P. Nagy, U. Semmelmann","doi":"10.1515/crelle-2023-0044","DOIUrl":null,"url":null,"abstract":"Abstract We obtain new lower bounds for the first non-zero eigenvalue of the scalar sub-Laplacian for 3-Sasaki metrics, improving the Lichnerowicz–Obata-type estimates by Ivanov, Petkov and Vassilev (2013, 2014). The limiting eigenspace is fully described in terms of the automorphism algebra. Our results can be thought of as an analogue of the Lichnerowicz–Matsushima estimate for Kähler–Einstein metrics. In dimension 7, if the automorphism algebra is non-vanishing, we also compute the second eigenvalue for the sub-Laplacian and construct explicit eigenfunctions. In addition, for all metrics in the canonical variation of the 3-Sasaki metric we give a lower bound for the spectrum of the Riemannian Laplace operator, depending only on scalar curvature and dimension. We also strengthen a result pertaining to the growth rate of harmonic functions, due to Conlon, Hein and Sun (2013, 2017), in the case of hyperkähler cones. In this setup we also describe the space of holomorphic functions.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Eigenvalue estimates for 3-Sasaki structures\",\"authors\":\"P. Nagy, U. Semmelmann\",\"doi\":\"10.1515/crelle-2023-0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We obtain new lower bounds for the first non-zero eigenvalue of the scalar sub-Laplacian for 3-Sasaki metrics, improving the Lichnerowicz–Obata-type estimates by Ivanov, Petkov and Vassilev (2013, 2014). The limiting eigenspace is fully described in terms of the automorphism algebra. Our results can be thought of as an analogue of the Lichnerowicz–Matsushima estimate for Kähler–Einstein metrics. In dimension 7, if the automorphism algebra is non-vanishing, we also compute the second eigenvalue for the sub-Laplacian and construct explicit eigenfunctions. In addition, for all metrics in the canonical variation of the 3-Sasaki metric we give a lower bound for the spectrum of the Riemannian Laplace operator, depending only on scalar curvature and dimension. We also strengthen a result pertaining to the growth rate of harmonic functions, due to Conlon, Hein and Sun (2013, 2017), in the case of hyperkähler cones. In this setup we also describe the space of holomorphic functions.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2023-0044\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0044","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们得到了3-Sasaki度量标量子拉普拉斯的第一个非零特征值的新下界,改进了Ivanov, Petkov和Vassilev(2013, 2014)的lichnerowicz - obata型估计。极限特征空间是用自同构代数完全描述的。我们的结果可以被认为是对Kähler-Einstein指标的Lichnerowicz-Matsushima估计的模拟。在第7维,如果自同构代数不消失,我们也计算子拉普拉斯的第二个特征值并构造显式特征函数。此外,对于3-Sasaki度规的正则变分中的所有度规,我们给出了黎曼拉普拉斯算子谱的下界,仅依赖于标量曲率和维数。由于Conlon, Hein和Sun(2013, 2017),在hyperkähler锥的情况下,我们还加强了与谐波函数增长率有关的结果。在这个构造中,我们也描述了全纯函数的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eigenvalue estimates for 3-Sasaki structures
Abstract We obtain new lower bounds for the first non-zero eigenvalue of the scalar sub-Laplacian for 3-Sasaki metrics, improving the Lichnerowicz–Obata-type estimates by Ivanov, Petkov and Vassilev (2013, 2014). The limiting eigenspace is fully described in terms of the automorphism algebra. Our results can be thought of as an analogue of the Lichnerowicz–Matsushima estimate for Kähler–Einstein metrics. In dimension 7, if the automorphism algebra is non-vanishing, we also compute the second eigenvalue for the sub-Laplacian and construct explicit eigenfunctions. In addition, for all metrics in the canonical variation of the 3-Sasaki metric we give a lower bound for the spectrum of the Riemannian Laplace operator, depending only on scalar curvature and dimension. We also strengthen a result pertaining to the growth rate of harmonic functions, due to Conlon, Hein and Sun (2013, 2017), in the case of hyperkähler cones. In this setup we also describe the space of holomorphic functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信