Hiddenite:利用片上模型构建的4K-PE隐藏网络推理4d张量引擎,在CIFAR-100和ImageNet上实现34.8- 16.0 tops /W

Kazutoshi Hirose, Jaehoon Yu, Kota Ando, Yasuyuki Okoshi, Ángel López García-Arias, Jun Suzuki, Thiem Van Chu, Kazushi Kawamura, Masato Motomura
{"title":"Hiddenite:利用片上模型构建的4K-PE隐藏网络推理4d张量引擎,在CIFAR-100和ImageNet上实现34.8- 16.0 tops /W","authors":"Kazutoshi Hirose, Jaehoon Yu, Kota Ando, Yasuyuki Okoshi, Ángel López García-Arias, Jun Suzuki, Thiem Van Chu, Kazushi Kawamura, Masato Motomura","doi":"10.1109/ISSCC42614.2022.9731668","DOIUrl":null,"url":null,"abstract":"Since the advent of the Lottery Ticket Hypothesis [1], which advocates the existence of embedded sparse models that achieve accuracies equivalent to the original dense model, new algorithms to find such subnetworks have been attracting attention. In particular, Hidden Network (HNN) [2] proposed a training method that finds such accurate subnetworks (Fig. 15.4.1). HNN extracts the sparse subnetwork by taking a logical AND of an initial model's random weights and a binary mask that defines the selected connections - a supermask. The importance of each connection, quantified as a score, is evaluated in the training phase; a supermask is learned by picking the connections with the top-k% highest scores. Although similar to pruning, supermask training is clearly different in that it never updates the initial random weights.","PeriodicalId":6830,"journal":{"name":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"28 4 Suppl 15 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Hiddenite: 4K-PE Hidden Network Inference 4D-Tensor Engine Exploiting On-Chip Model Construction Achieving 34.8-to-16.0TOPS/W for CIFAR-100 and ImageNet\",\"authors\":\"Kazutoshi Hirose, Jaehoon Yu, Kota Ando, Yasuyuki Okoshi, Ángel López García-Arias, Jun Suzuki, Thiem Van Chu, Kazushi Kawamura, Masato Motomura\",\"doi\":\"10.1109/ISSCC42614.2022.9731668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the advent of the Lottery Ticket Hypothesis [1], which advocates the existence of embedded sparse models that achieve accuracies equivalent to the original dense model, new algorithms to find such subnetworks have been attracting attention. In particular, Hidden Network (HNN) [2] proposed a training method that finds such accurate subnetworks (Fig. 15.4.1). HNN extracts the sparse subnetwork by taking a logical AND of an initial model's random weights and a binary mask that defines the selected connections - a supermask. The importance of each connection, quantified as a score, is evaluated in the training phase; a supermask is learned by picking the connections with the top-k% highest scores. Although similar to pruning, supermask training is clearly different in that it never updates the initial random weights.\",\"PeriodicalId\":6830,\"journal\":{\"name\":\"2022 IEEE International Solid- State Circuits Conference (ISSCC)\",\"volume\":\"28 4 Suppl 15 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Solid- State Circuits Conference (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC42614.2022.9731668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42614.2022.9731668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

自从彩票假设[1]提出以来,该假设主张存在与原始密集模型精度相当的嵌入式稀疏模型,寻找此类子网的新算法一直备受关注。其中,隐网络(Hidden Network, HNN)[2]提出了一种寻找此类精确子网的训练方法(图15.4.1)。HNN通过对初始模型的随机权重和定义所选连接的二进制掩码(超级掩码)进行逻辑与提取稀疏子网络。每个连接的重要性,量化为分数,在训练阶段进行评估;超掩码是通过选择得分最高的前k%的连接来学习的。虽然与剪枝相似,但超掩码训练明显不同,因为它从不更新初始随机权值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hiddenite: 4K-PE Hidden Network Inference 4D-Tensor Engine Exploiting On-Chip Model Construction Achieving 34.8-to-16.0TOPS/W for CIFAR-100 and ImageNet
Since the advent of the Lottery Ticket Hypothesis [1], which advocates the existence of embedded sparse models that achieve accuracies equivalent to the original dense model, new algorithms to find such subnetworks have been attracting attention. In particular, Hidden Network (HNN) [2] proposed a training method that finds such accurate subnetworks (Fig. 15.4.1). HNN extracts the sparse subnetwork by taking a logical AND of an initial model's random weights and a binary mask that defines the selected connections - a supermask. The importance of each connection, quantified as a score, is evaluated in the training phase; a supermask is learned by picking the connections with the top-k% highest scores. Although similar to pruning, supermask training is clearly different in that it never updates the initial random weights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信