具有自适应搜索范围和融合的层次深度处理

Zucheul Lee, Truong Q. Nguyen
{"title":"具有自适应搜索范围和融合的层次深度处理","authors":"Zucheul Lee, Truong Q. Nguyen","doi":"10.1109/ICASSP.2014.6853663","DOIUrl":null,"url":null,"abstract":"In this paper, we present an effective hierarchical depth processing and fusion for large stereo images. We propose the adaptive disparity search range based on the combined local structure from image and initial disparity. The adaptive search range can propagate the smoothness property at the coarse level to the fine level while preserving details and suppressing undesirable errors. The spatial-multiscale total variation method is investigated to enforce the spatial and scaling consistency of multi-scale depth estimates. The experimental results demonstrate that the proposed hierarchical scheme produces high quality and high resolution depth maps by fusing individual multi-scale depth maps, while reducing complexity.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"21 1","pages":"584-588"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hierarchical depth processing with adaptive search range and fusion\",\"authors\":\"Zucheul Lee, Truong Q. Nguyen\",\"doi\":\"10.1109/ICASSP.2014.6853663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an effective hierarchical depth processing and fusion for large stereo images. We propose the adaptive disparity search range based on the combined local structure from image and initial disparity. The adaptive search range can propagate the smoothness property at the coarse level to the fine level while preserving details and suppressing undesirable errors. The spatial-multiscale total variation method is investigated to enforce the spatial and scaling consistency of multi-scale depth estimates. The experimental results demonstrate that the proposed hierarchical scheme produces high quality and high resolution depth maps by fusing individual multi-scale depth maps, while reducing complexity.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"21 1\",\"pages\":\"584-588\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6853663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6853663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种有效的大型立体图像分层深度处理与融合方法。提出了基于图像局部结构和初始视差相结合的自适应视差搜索范围。自适应搜索范围可以在保留细节和抑制不良误差的同时,将粗级平滑特性传播到细级。为了提高多尺度深度估计的空间一致性和尺度一致性,研究了空间-多尺度全变分方法。实验结果表明,该算法通过融合单个多比例尺深度图,得到高质量、高分辨率的深度图,同时降低了深度图的复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical depth processing with adaptive search range and fusion
In this paper, we present an effective hierarchical depth processing and fusion for large stereo images. We propose the adaptive disparity search range based on the combined local structure from image and initial disparity. The adaptive search range can propagate the smoothness property at the coarse level to the fine level while preserving details and suppressing undesirable errors. The spatial-multiscale total variation method is investigated to enforce the spatial and scaling consistency of multi-scale depth estimates. The experimental results demonstrate that the proposed hierarchical scheme produces high quality and high resolution depth maps by fusing individual multi-scale depth maps, while reducing complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信