{"title":"Radon-Nikodým有限可加多测度定理","authors":"L. Piazza, G. Porcello","doi":"10.4171/ZAA/1545","DOIUrl":null,"url":null,"abstract":". In this paper we deal with interval multimeasures. We show some Radon-Nikod´ym theorems for such multimeasures using multival- ued Henstock or Henstock-Kurzweil-Pettis derivatives. We do not use the separability assumption in the results.","PeriodicalId":54402,"journal":{"name":"Zeitschrift fur Analysis und ihre Anwendungen","volume":"79 1","pages":"373-389"},"PeriodicalIF":0.7000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Radon–Nikodým Theorems for Finitely Additive Multimeasures\",\"authors\":\"L. Piazza, G. Porcello\",\"doi\":\"10.4171/ZAA/1545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper we deal with interval multimeasures. We show some Radon-Nikod´ym theorems for such multimeasures using multival- ued Henstock or Henstock-Kurzweil-Pettis derivatives. We do not use the separability assumption in the results.\",\"PeriodicalId\":54402,\"journal\":{\"name\":\"Zeitschrift fur Analysis und ihre Anwendungen\",\"volume\":\"79 1\",\"pages\":\"373-389\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2015-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Analysis und ihre Anwendungen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ZAA/1545\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Analysis und ihre Anwendungen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ZAA/1545","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Radon–Nikodým Theorems for Finitely Additive Multimeasures
. In this paper we deal with interval multimeasures. We show some Radon-Nikod´ym theorems for such multimeasures using multival- ued Henstock or Henstock-Kurzweil-Pettis derivatives. We do not use the separability assumption in the results.
期刊介绍:
The Journal of Analysis and its Applications aims at disseminating theoretical knowledge in the field of analysis and, at the same time, cultivating and extending its applications.
To this end, it publishes research articles on differential equations and variational problems, functional analysis and operator theory together with their theoretical foundations and their applications – within mathematics, physics and other disciplines of the exact sciences.