{"title":"Radon-Nikodým有限可加多测度定理","authors":"L. Piazza, G. Porcello","doi":"10.4171/ZAA/1545","DOIUrl":null,"url":null,"abstract":". In this paper we deal with interval multimeasures. We show some Radon-Nikod´ym theorems for such multimeasures using multival- ued Henstock or Henstock-Kurzweil-Pettis derivatives. We do not use the separability assumption in the results.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Radon–Nikodým Theorems for Finitely Additive Multimeasures\",\"authors\":\"L. Piazza, G. Porcello\",\"doi\":\"10.4171/ZAA/1545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper we deal with interval multimeasures. We show some Radon-Nikod´ym theorems for such multimeasures using multival- ued Henstock or Henstock-Kurzweil-Pettis derivatives. We do not use the separability assumption in the results.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ZAA/1545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ZAA/1545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Radon–Nikodým Theorems for Finitely Additive Multimeasures
. In this paper we deal with interval multimeasures. We show some Radon-Nikod´ym theorems for such multimeasures using multival- ued Henstock or Henstock-Kurzweil-Pettis derivatives. We do not use the separability assumption in the results.