B. Donfack, G. T. Tedondje, T. M. Cedric, C.D.G. Ngoufack, A. Fotue
{"title":"强抛物势下三维杂质存在下磁极化子的退相干和弛豫时间","authors":"B. Donfack, G. T. Tedondje, T. M. Cedric, C.D.G. Ngoufack, A. Fotue","doi":"10.11648/J.AJMP.20211005.11","DOIUrl":null,"url":null,"abstract":"In order to protect coherence of quantum states and reduce the impact of environment on quantum information, we investigate decoherence and relaxation time of magnetopolaron in the presence of three dimensional impurity under strong parabolic potential. The first states energies have been evaluated using the Lee Low Pine transformation and Pekar-type variational method. Parameters such as: decoherence time, transition frequency, spontaneous emission, Shannon entropy, relaxation time and probability density, have been evaluated. It has been seen that the impurity and electron-phonon coupling constant have a considerable effect on formation, protection of quantum qubit and quantum transport. The information exchange measured by the rate of Shannon entropy, has a great dependence on impurity and with its interaction with electrons. The relaxation time τr exhibits increasing behavior as a function of, α, β, and ωc. The electron-phonon coupling constant, impurity and cyclotron frequency are useful parameters to prevent decoherence phenomena. This study paves the way to prolong quantum effect in nanostructure and favor the realization of the future quantum computer.","PeriodicalId":7717,"journal":{"name":"American Journal of Modern Physics","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Decoherence and Relaxation Time of Magnetopolaron in the Presence of Three Dimensional Impurity Under Strong Parabolic Potential\",\"authors\":\"B. Donfack, G. T. Tedondje, T. M. Cedric, C.D.G. Ngoufack, A. Fotue\",\"doi\":\"10.11648/J.AJMP.20211005.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to protect coherence of quantum states and reduce the impact of environment on quantum information, we investigate decoherence and relaxation time of magnetopolaron in the presence of three dimensional impurity under strong parabolic potential. The first states energies have been evaluated using the Lee Low Pine transformation and Pekar-type variational method. Parameters such as: decoherence time, transition frequency, spontaneous emission, Shannon entropy, relaxation time and probability density, have been evaluated. It has been seen that the impurity and electron-phonon coupling constant have a considerable effect on formation, protection of quantum qubit and quantum transport. The information exchange measured by the rate of Shannon entropy, has a great dependence on impurity and with its interaction with electrons. The relaxation time τr exhibits increasing behavior as a function of, α, β, and ωc. The electron-phonon coupling constant, impurity and cyclotron frequency are useful parameters to prevent decoherence phenomena. This study paves the way to prolong quantum effect in nanostructure and favor the realization of the future quantum computer.\",\"PeriodicalId\":7717,\"journal\":{\"name\":\"American Journal of Modern Physics\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Modern Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJMP.20211005.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Modern Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJMP.20211005.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decoherence and Relaxation Time of Magnetopolaron in the Presence of Three Dimensional Impurity Under Strong Parabolic Potential
In order to protect coherence of quantum states and reduce the impact of environment on quantum information, we investigate decoherence and relaxation time of magnetopolaron in the presence of three dimensional impurity under strong parabolic potential. The first states energies have been evaluated using the Lee Low Pine transformation and Pekar-type variational method. Parameters such as: decoherence time, transition frequency, spontaneous emission, Shannon entropy, relaxation time and probability density, have been evaluated. It has been seen that the impurity and electron-phonon coupling constant have a considerable effect on formation, protection of quantum qubit and quantum transport. The information exchange measured by the rate of Shannon entropy, has a great dependence on impurity and with its interaction with electrons. The relaxation time τr exhibits increasing behavior as a function of, α, β, and ωc. The electron-phonon coupling constant, impurity and cyclotron frequency are useful parameters to prevent decoherence phenomena. This study paves the way to prolong quantum effect in nanostructure and favor the realization of the future quantum computer.