{"title":"具有移动接口约束的LWR模型","authors":"A. Sylla","doi":"10.1051/m2an/2022030","DOIUrl":null,"url":null,"abstract":"We propose a mathematical framework to the study of scalar conservation laws with moving interfaces. This framework is developed on a LWR model with constraint on the flux along these moving interfaces. Existence is proved by means of a finite volume scheme. The originality lies in the local modification of the mesh and in the treatment of the crossing points of the trajectories.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A LWR model with constraints at moving interfaces\",\"authors\":\"A. Sylla\",\"doi\":\"10.1051/m2an/2022030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a mathematical framework to the study of scalar conservation laws with moving interfaces. This framework is developed on a LWR model with constraint on the flux along these moving interfaces. Existence is proved by means of a finite volume scheme. The originality lies in the local modification of the mesh and in the treatment of the crossing points of the trajectories.\",\"PeriodicalId\":50499,\"journal\":{\"name\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/m2an/2022030\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2022030","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
We propose a mathematical framework to the study of scalar conservation laws with moving interfaces. This framework is developed on a LWR model with constraint on the flux along these moving interfaces. Existence is proved by means of a finite volume scheme. The originality lies in the local modification of the mesh and in the treatment of the crossing points of the trajectories.
期刊介绍:
M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem.
Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.