热冲击法制备复合材料及其性能

N.A. Orynbay, K. Kudaibergenov, E. Doszhanov, Z. Mansurov
{"title":"热冲击法制备复合材料及其性能","authors":"N.A. Orynbay, K. Kudaibergenov, E. Doszhanov, Z. Mansurov","doi":"10.51580/2021-1/2710-1185.33","DOIUrl":null,"url":null,"abstract":"By the method of heat treatment, a mixture of graphite and salts was obtained from the foam graphite and the conditions for its effective production were determined. The composition of natural graphite of the GL-1 grade of the Russian deposit was determined. The study shows that the main element in graphite is a mixture of carbon and other elements. The analysis of energy dispersions showed the content of other elements in graphite. The content of Zn in the penografite obtained by elemental analysis was determined. In addition, the physicochemical properties of heat-treated graphite were investigated. Using IR spectroscopy, it was found that there are different groups on the surface of the penografite. Analysis of the CS-spectra of penografite allowed us to determine the structure of graphite and penografite. The conducted studies have shown that penografite differs depending on the forms of the spectrum, a set of spectral characteristics that allow us to quantify the degree of maturity of the crystal lattice and identify various defects. Raman spectroscopy for a full understanding of the results of the analysis, studies were carried out scanning electron microscopy (SEM) on a layered structure of penografia. The result of microanalysis and heat treatment shows that natural graphite has changed its composition and structure. It is established that the high-temperature thermal effect significantly changes the quantitative composition of the mixture and the content of various elements depends on the temperature of the thermal cover. The EDAX spectra of heat-treated graphite are shown.","PeriodicalId":9856,"journal":{"name":"Chemical Journal of Kazakhstan","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OBTAINING OF COMPOSITE MATERIALS BY THERMAL SHOCK AND THEIR PROPERTIES\",\"authors\":\"N.A. Orynbay, K. Kudaibergenov, E. Doszhanov, Z. Mansurov\",\"doi\":\"10.51580/2021-1/2710-1185.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By the method of heat treatment, a mixture of graphite and salts was obtained from the foam graphite and the conditions for its effective production were determined. The composition of natural graphite of the GL-1 grade of the Russian deposit was determined. The study shows that the main element in graphite is a mixture of carbon and other elements. The analysis of energy dispersions showed the content of other elements in graphite. The content of Zn in the penografite obtained by elemental analysis was determined. In addition, the physicochemical properties of heat-treated graphite were investigated. Using IR spectroscopy, it was found that there are different groups on the surface of the penografite. Analysis of the CS-spectra of penografite allowed us to determine the structure of graphite and penografite. The conducted studies have shown that penografite differs depending on the forms of the spectrum, a set of spectral characteristics that allow us to quantify the degree of maturity of the crystal lattice and identify various defects. Raman spectroscopy for a full understanding of the results of the analysis, studies were carried out scanning electron microscopy (SEM) on a layered structure of penografia. The result of microanalysis and heat treatment shows that natural graphite has changed its composition and structure. It is established that the high-temperature thermal effect significantly changes the quantitative composition of the mixture and the content of various elements depends on the temperature of the thermal cover. The EDAX spectra of heat-treated graphite are shown.\",\"PeriodicalId\":9856,\"journal\":{\"name\":\"Chemical Journal of Kazakhstan\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Journal of Kazakhstan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51580/2021-1/2710-1185.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Journal of Kazakhstan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51580/2021-1/2710-1185.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用热处理的方法,将泡沫石墨制成石墨盐混合物,并确定其有效生产的条件。测定了俄罗斯某矿床GL-1级天然石墨的组成。研究表明,石墨中的主要元素是碳和其他元素的混合物。能量色散分析显示了石墨中其他元素的含量。测定了元素分析得到的黝锌矿中锌的含量。此外,还研究了热处理后石墨的理化性质。红外光谱分析发现,石墨烯表面存在不同的基团。通过对石墨的cs光谱分析,可以确定石墨和石墨的结构。所进行的研究表明,石墨烯的不同取决于光谱的形式,一组光谱特征使我们能够量化晶格的成熟程度并识别各种缺陷。为了充分了解拉曼光谱的分析结果,在扫描电子显微镜(SEM)上进行了层状结构的石墨烯研究。显微分析和热处理结果表明,天然石墨的成分和结构发生了变化。确定了高温热效应显著地改变了混合物的定量组成,各种元素的含量取决于热罩的温度。给出了热处理石墨的EDAX光谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OBTAINING OF COMPOSITE MATERIALS BY THERMAL SHOCK AND THEIR PROPERTIES
By the method of heat treatment, a mixture of graphite and salts was obtained from the foam graphite and the conditions for its effective production were determined. The composition of natural graphite of the GL-1 grade of the Russian deposit was determined. The study shows that the main element in graphite is a mixture of carbon and other elements. The analysis of energy dispersions showed the content of other elements in graphite. The content of Zn in the penografite obtained by elemental analysis was determined. In addition, the physicochemical properties of heat-treated graphite were investigated. Using IR spectroscopy, it was found that there are different groups on the surface of the penografite. Analysis of the CS-spectra of penografite allowed us to determine the structure of graphite and penografite. The conducted studies have shown that penografite differs depending on the forms of the spectrum, a set of spectral characteristics that allow us to quantify the degree of maturity of the crystal lattice and identify various defects. Raman spectroscopy for a full understanding of the results of the analysis, studies were carried out scanning electron microscopy (SEM) on a layered structure of penografia. The result of microanalysis and heat treatment shows that natural graphite has changed its composition and structure. It is established that the high-temperature thermal effect significantly changes the quantitative composition of the mixture and the content of various elements depends on the temperature of the thermal cover. The EDAX spectra of heat-treated graphite are shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信