一种基于自适应背景减法的目标检测与跟踪新方法

K. Angelo
{"title":"一种基于自适应背景减法的目标检测与跟踪新方法","authors":"K. Angelo","doi":"10.1109/ICCMC.2018.8487514","DOIUrl":null,"url":null,"abstract":"Image processing is an ever increasing research scope area where real time surveillance systems will increases the opportunity to the researchers for developing new modules for all the problems. Particularly in complex video processing operations security, intelligence processing is much needed in the society to satisfy the individuals. Basic object detection and tracking has different techniques and many automated systems are available now days to analyze the particular portion or object from the video. Estimation of moving object from the video sequence provides robustness for same colors for object and the background. In view of reducing the robustness and improving the performance of object detecting and tracking system the proposed model used Markov model based background subtraction. It uses neighborhood method to improve the background performance and Markov random field is used to estimate the energy function to optimize the real time experimental results. Generating saliency map combines the texture and cues to explore the linearly generated objects and tracked using component labeling.","PeriodicalId":6604,"journal":{"name":"2018 Second International Conference on Computing Methodologies and Communication (ICCMC)","volume":"109 1","pages":"1055-1059"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A novel approach on object detection and tracking using adaptive background subtraction method\",\"authors\":\"K. Angelo\",\"doi\":\"10.1109/ICCMC.2018.8487514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image processing is an ever increasing research scope area where real time surveillance systems will increases the opportunity to the researchers for developing new modules for all the problems. Particularly in complex video processing operations security, intelligence processing is much needed in the society to satisfy the individuals. Basic object detection and tracking has different techniques and many automated systems are available now days to analyze the particular portion or object from the video. Estimation of moving object from the video sequence provides robustness for same colors for object and the background. In view of reducing the robustness and improving the performance of object detecting and tracking system the proposed model used Markov model based background subtraction. It uses neighborhood method to improve the background performance and Markov random field is used to estimate the energy function to optimize the real time experimental results. Generating saliency map combines the texture and cues to explore the linearly generated objects and tracked using component labeling.\",\"PeriodicalId\":6604,\"journal\":{\"name\":\"2018 Second International Conference on Computing Methodologies and Communication (ICCMC)\",\"volume\":\"109 1\",\"pages\":\"1055-1059\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second International Conference on Computing Methodologies and Communication (ICCMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCMC.2018.8487514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC.2018.8487514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

图像处理是一个研究范围不断扩大的领域,实时监控系统将为研究人员开发新的模块来解决所有问题提供机会。特别是在复杂的视频处理安全操作中,社会非常需要智能化处理来满足个人的需求。基本的目标检测和跟踪有不同的技术,现在有许多自动化系统可以分析视频中的特定部分或对象。从视频序列中对运动物体的估计提供了对物体和背景相同颜色的鲁棒性。从降低目标检测跟踪系统的鲁棒性和提高系统性能的角度出发,该模型采用基于马尔可夫模型的背景减法。利用邻域法提高背景性能,利用马尔科夫随机场估计能量函数,优化实时实验结果。生成显著性地图结合了纹理和线索来探索线性生成的对象,并使用组件标签进行跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel approach on object detection and tracking using adaptive background subtraction method
Image processing is an ever increasing research scope area where real time surveillance systems will increases the opportunity to the researchers for developing new modules for all the problems. Particularly in complex video processing operations security, intelligence processing is much needed in the society to satisfy the individuals. Basic object detection and tracking has different techniques and many automated systems are available now days to analyze the particular portion or object from the video. Estimation of moving object from the video sequence provides robustness for same colors for object and the background. In view of reducing the robustness and improving the performance of object detecting and tracking system the proposed model used Markov model based background subtraction. It uses neighborhood method to improve the background performance and Markov random field is used to estimate the energy function to optimize the real time experimental results. Generating saliency map combines the texture and cues to explore the linearly generated objects and tracked using component labeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信