相位成像的高效高斯推理算法

Jingshan Zhang, J. Dauwels, M. A. Vázquez, L. Waller
{"title":"相位成像的高效高斯推理算法","authors":"Jingshan Zhang, J. Dauwels, M. A. Vázquez, L. Waller","doi":"10.1109/ICASSP.2012.6287959","DOIUrl":null,"url":null,"abstract":"Novel efficient algorithms are developed to infer the phase of a complex optical field from a sequence of intensity images taken at different defocus distances. The non-linear observation model is approximated by a linear model. The complex optical field is inferred by iterative Kalman smoothing in the Fourier domain: forward and backward sweeps of Kalman recursions are alternated, and in each such sweep, the approximate linear model is refined. By limiting the number of iterations, one can trade off accuracy vs. complexity. The complexity of each iteration in the proposed algorithm is in the order of N logN, where N is the number of pixels per image. The storage required scales linearly with N. In contrast, the complexity of existing phase inference algorithms scales with N3 and the required storage with N2. The proposed algorithms may enable real-time estimation of optical fields from noisy intensity images.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"52 1","pages":"617-620"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Efficient Gaussian inference algorithms for phase imaging\",\"authors\":\"Jingshan Zhang, J. Dauwels, M. A. Vázquez, L. Waller\",\"doi\":\"10.1109/ICASSP.2012.6287959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novel efficient algorithms are developed to infer the phase of a complex optical field from a sequence of intensity images taken at different defocus distances. The non-linear observation model is approximated by a linear model. The complex optical field is inferred by iterative Kalman smoothing in the Fourier domain: forward and backward sweeps of Kalman recursions are alternated, and in each such sweep, the approximate linear model is refined. By limiting the number of iterations, one can trade off accuracy vs. complexity. The complexity of each iteration in the proposed algorithm is in the order of N logN, where N is the number of pixels per image. The storage required scales linearly with N. In contrast, the complexity of existing phase inference algorithms scales with N3 and the required storage with N2. The proposed algorithms may enable real-time estimation of optical fields from noisy intensity images.\",\"PeriodicalId\":6443,\"journal\":{\"name\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"52 1\",\"pages\":\"617-620\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2012.6287959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6287959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种新的高效算法,可以从不同离焦距离下拍摄的一系列强度图像中推断出复杂光场的相位。非线性观测模型用线性模型近似。在傅里叶域中通过迭代卡尔曼平滑来推断复光场:卡尔曼递归的前向扫描和后向扫描交替进行,并且在每次扫描中对近似线性模型进行改进。通过限制迭代次数,可以在准确性与复杂性之间进行权衡。本文算法每次迭代的复杂度为N logN的数量级,其中N为每张图像的像素数。相比之下,现有相位推断算法的复杂度随N3的增加而增加,所需的存储空间随N2的增加而增加。所提出的算法可以实现从噪声强度图像中实时估计光场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Gaussian inference algorithms for phase imaging
Novel efficient algorithms are developed to infer the phase of a complex optical field from a sequence of intensity images taken at different defocus distances. The non-linear observation model is approximated by a linear model. The complex optical field is inferred by iterative Kalman smoothing in the Fourier domain: forward and backward sweeps of Kalman recursions are alternated, and in each such sweep, the approximate linear model is refined. By limiting the number of iterations, one can trade off accuracy vs. complexity. The complexity of each iteration in the proposed algorithm is in the order of N logN, where N is the number of pixels per image. The storage required scales linearly with N. In contrast, the complexity of existing phase inference algorithms scales with N3 and the required storage with N2. The proposed algorithms may enable real-time estimation of optical fields from noisy intensity images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信