{"title":"Cd1−xMgxTe薄膜在高效太阳能电池中应用的生长和表征","authors":"P. Kobyakov, R. Geisthardt, T. Cote, W. Sampath","doi":"10.1109/PVSC.2012.6317591","DOIUrl":null,"url":null,"abstract":"Expanded band gap ternary alloys, such as Cd1-xMgxTe, could be beneficial for formation of high-efficiency CdTe solar cells structures, such as multi-junction and electron reflector devices. Cd1-xMgxTe thin films were grown by side-by-side co-evaporation from CdTe and Mg precursors. Optical measurements reveal increased band gap with higher Mg incorporation and lateral band gap grading across the substrate. SEM imaging denotes a grain size decrease with Mg incorporation. XPS analysis indicates Mg directly replaces Cd in the film. TEC10/CdS/Cd1-xMgxTe structures with and without CdCl2 treatment demonstrate photovoltaic diode behavior similar to typical CdS/CdTe devices. LBIC and QE measurements register grading consistent with band gap grading of the film. Although successful, refinement of Cd1-xMgxTe thin film co-evaporation is needed to improve spatial uniformity for large area deposition.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":"29 1","pages":"000160-000163"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Growth and characterization of Cd1−xMgxTe thin films for possible application in high-efficiency solar cells\",\"authors\":\"P. Kobyakov, R. Geisthardt, T. Cote, W. Sampath\",\"doi\":\"10.1109/PVSC.2012.6317591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Expanded band gap ternary alloys, such as Cd1-xMgxTe, could be beneficial for formation of high-efficiency CdTe solar cells structures, such as multi-junction and electron reflector devices. Cd1-xMgxTe thin films were grown by side-by-side co-evaporation from CdTe and Mg precursors. Optical measurements reveal increased band gap with higher Mg incorporation and lateral band gap grading across the substrate. SEM imaging denotes a grain size decrease with Mg incorporation. XPS analysis indicates Mg directly replaces Cd in the film. TEC10/CdS/Cd1-xMgxTe structures with and without CdCl2 treatment demonstrate photovoltaic diode behavior similar to typical CdS/CdTe devices. LBIC and QE measurements register grading consistent with band gap grading of the film. Although successful, refinement of Cd1-xMgxTe thin film co-evaporation is needed to improve spatial uniformity for large area deposition.\",\"PeriodicalId\":6318,\"journal\":{\"name\":\"2012 38th IEEE Photovoltaic Specialists Conference\",\"volume\":\"29 1\",\"pages\":\"000160-000163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 38th IEEE Photovoltaic Specialists Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2012.6317591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 38th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2012.6317591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Growth and characterization of Cd1−xMgxTe thin films for possible application in high-efficiency solar cells
Expanded band gap ternary alloys, such as Cd1-xMgxTe, could be beneficial for formation of high-efficiency CdTe solar cells structures, such as multi-junction and electron reflector devices. Cd1-xMgxTe thin films were grown by side-by-side co-evaporation from CdTe and Mg precursors. Optical measurements reveal increased band gap with higher Mg incorporation and lateral band gap grading across the substrate. SEM imaging denotes a grain size decrease with Mg incorporation. XPS analysis indicates Mg directly replaces Cd in the film. TEC10/CdS/Cd1-xMgxTe structures with and without CdCl2 treatment demonstrate photovoltaic diode behavior similar to typical CdS/CdTe devices. LBIC and QE measurements register grading consistent with band gap grading of the film. Although successful, refinement of Cd1-xMgxTe thin film co-evaporation is needed to improve spatial uniformity for large area deposition.