A. Kulkov, R. Balokhonov, V. Romanova, V. Shadrin, S. O. Kasparyan
{"title":"钨酸铝锆复合材料的显微组织和力学性能","authors":"A. Kulkov, R. Balokhonov, V. Romanova, V. Shadrin, S. O. Kasparyan","doi":"10.1063/1.5132058","DOIUrl":null,"url":null,"abstract":"Deformation and fracture of particle-reinforced aluminum-zirconium tungstate metal-matrix composite are experimentally and numerically investigated. The composite material was fabricated using pure aluminum ACD-6 and ZrW2O8 powders mixed in proportions 90% and 10%, respectively. Mechanical tests on compression of the composite specimens were carried out, and the microstructure was investigated before and after the tests. Numerical simulation of the composite deformation was performed in two dimensional formulation of the dynamic boundary-value problem. Experimentally observed microstructure is included in calculations in an explicit form. Plastic strain localization and fracture in the matrix and particles were studied.Deformation and fracture of particle-reinforced aluminum-zirconium tungstate metal-matrix composite are experimentally and numerically investigated. The composite material was fabricated using pure aluminum ACD-6 and ZrW2O8 powders mixed in proportions 90% and 10%, respectively. Mechanical tests on compression of the composite specimens were carried out, and the microstructure was investigated before and after the tests. Numerical simulation of the composite deformation was performed in two dimensional formulation of the dynamic boundary-value problem. Experimentally observed microstructure is included in calculations in an explicit form. Plastic strain localization and fracture in the matrix and particles were studied.","PeriodicalId":20637,"journal":{"name":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and mechanical properties of the aluminum-zirconium tungstate composite\",\"authors\":\"A. Kulkov, R. Balokhonov, V. Romanova, V. Shadrin, S. O. Kasparyan\",\"doi\":\"10.1063/1.5132058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deformation and fracture of particle-reinforced aluminum-zirconium tungstate metal-matrix composite are experimentally and numerically investigated. The composite material was fabricated using pure aluminum ACD-6 and ZrW2O8 powders mixed in proportions 90% and 10%, respectively. Mechanical tests on compression of the composite specimens were carried out, and the microstructure was investigated before and after the tests. Numerical simulation of the composite deformation was performed in two dimensional formulation of the dynamic boundary-value problem. Experimentally observed microstructure is included in calculations in an explicit form. Plastic strain localization and fracture in the matrix and particles were studied.Deformation and fracture of particle-reinforced aluminum-zirconium tungstate metal-matrix composite are experimentally and numerically investigated. The composite material was fabricated using pure aluminum ACD-6 and ZrW2O8 powders mixed in proportions 90% and 10%, respectively. Mechanical tests on compression of the composite specimens were carried out, and the microstructure was investigated before and after the tests. Numerical simulation of the composite deformation was performed in two dimensional formulation of the dynamic boundary-value problem. Experimentally observed microstructure is included in calculations in an explicit form. Plastic strain localization and fracture in the matrix and particles were studied.\",\"PeriodicalId\":20637,\"journal\":{\"name\":\"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5132058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5132058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microstructure and mechanical properties of the aluminum-zirconium tungstate composite
Deformation and fracture of particle-reinforced aluminum-zirconium tungstate metal-matrix composite are experimentally and numerically investigated. The composite material was fabricated using pure aluminum ACD-6 and ZrW2O8 powders mixed in proportions 90% and 10%, respectively. Mechanical tests on compression of the composite specimens were carried out, and the microstructure was investigated before and after the tests. Numerical simulation of the composite deformation was performed in two dimensional formulation of the dynamic boundary-value problem. Experimentally observed microstructure is included in calculations in an explicit form. Plastic strain localization and fracture in the matrix and particles were studied.Deformation and fracture of particle-reinforced aluminum-zirconium tungstate metal-matrix composite are experimentally and numerically investigated. The composite material was fabricated using pure aluminum ACD-6 and ZrW2O8 powders mixed in proportions 90% and 10%, respectively. Mechanical tests on compression of the composite specimens were carried out, and the microstructure was investigated before and after the tests. Numerical simulation of the composite deformation was performed in two dimensional formulation of the dynamic boundary-value problem. Experimentally observed microstructure is included in calculations in an explicit form. Plastic strain localization and fracture in the matrix and particles were studied.