评估风险敏感文本检索

R. Benham
{"title":"评估风险敏感文本检索","authors":"R. Benham","doi":"10.1145/3331184.3331423","DOIUrl":null,"url":null,"abstract":"Search engines with a loyal user-base face the difficult task of improving overall effectiveness while maintaining the quality of existing work-flows. Risk-sensitive evaluation tools are designed to address that task, but, they currently do not support inference over multiple baselines. Our research objectives are to: 1) Survey and revisit risk evaluation, taking into account frequentist and Bayesian inference approaches for comparing against multiple baselines; 2) Apply that new approach, evaluating a novel web search technique that leverages previously run queries to improve the effectiveness of a new user query; and 3) Explore how risk-sensitive component interactions affect end-to-end effectiveness in a search pipeline.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Risk-Sensitive Text Retrieval\",\"authors\":\"R. Benham\",\"doi\":\"10.1145/3331184.3331423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Search engines with a loyal user-base face the difficult task of improving overall effectiveness while maintaining the quality of existing work-flows. Risk-sensitive evaluation tools are designed to address that task, but, they currently do not support inference over multiple baselines. Our research objectives are to: 1) Survey and revisit risk evaluation, taking into account frequentist and Bayesian inference approaches for comparing against multiple baselines; 2) Apply that new approach, evaluating a novel web search technique that leverages previously run queries to improve the effectiveness of a new user query; and 3) Explore how risk-sensitive component interactions affect end-to-end effectiveness in a search pipeline.\",\"PeriodicalId\":20700,\"journal\":{\"name\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3331184.3331423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

拥有忠实用户基础的搜索引擎面临着在保持现有工作流质量的同时提高整体效率的艰巨任务。对风险敏感的评估工具被设计用来处理这个任务,但是,它们目前不支持对多个基线的推断。我们的研究目标是:1)调查和重新审视风险评估,考虑频率论和贝叶斯推理方法,与多个基线进行比较;2)应用这种新方法,评估一种新的网络搜索技术,该技术利用以前运行的查询来提高新用户查询的有效性;3)探索风险敏感组件交互如何影响搜索管道中的端到端有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating Risk-Sensitive Text Retrieval
Search engines with a loyal user-base face the difficult task of improving overall effectiveness while maintaining the quality of existing work-flows. Risk-sensitive evaluation tools are designed to address that task, but, they currently do not support inference over multiple baselines. Our research objectives are to: 1) Survey and revisit risk evaluation, taking into account frequentist and Bayesian inference approaches for comparing against multiple baselines; 2) Apply that new approach, evaluating a novel web search technique that leverages previously run queries to improve the effectiveness of a new user query; and 3) Explore how risk-sensitive component interactions affect end-to-end effectiveness in a search pipeline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信