{"title":"一类非线性偏微分方程行波解的Auto-B ø cklund变换","authors":"I. Inan, Ünal Iç","doi":"10.18466/CBAYARFBE.614476","DOIUrl":null,"url":null,"abstract":"In this paper, we implemented Auto-B cklund transformation for finding the travelling wave solutions of the complexly coupled KdV equations and the sixth order equation of the Burgers hierarchy. These solutions are hyperbolic function solutions and exponential function solutions. The Auto- B cklund transformation used in this article is a powerful method for finding traveling wave solutions of nonlinear partial differential equations.","PeriodicalId":9652,"journal":{"name":"Celal Bayar Universitesi Fen Bilimleri Dergisi","volume":"279 1","pages":"229-236"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auto-B̈cklund Transformation for Travelling Wave Solutions of Some Nonlinear Partial Differential Equations\",\"authors\":\"I. Inan, Ünal Iç\",\"doi\":\"10.18466/CBAYARFBE.614476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we implemented Auto-B cklund transformation for finding the travelling wave solutions of the complexly coupled KdV equations and the sixth order equation of the Burgers hierarchy. These solutions are hyperbolic function solutions and exponential function solutions. The Auto- B cklund transformation used in this article is a powerful method for finding traveling wave solutions of nonlinear partial differential equations.\",\"PeriodicalId\":9652,\"journal\":{\"name\":\"Celal Bayar Universitesi Fen Bilimleri Dergisi\",\"volume\":\"279 1\",\"pages\":\"229-236\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Celal Bayar Universitesi Fen Bilimleri Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18466/CBAYARFBE.614476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Celal Bayar Universitesi Fen Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18466/CBAYARFBE.614476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文采用Auto-B - cklund变换求解复杂耦合KdV方程和Burgers层次六阶方程的行波解。这些解是双曲函数解和指数函数解。本文所采用的Auto- B - cklund变换是求解非线性偏微分方程行波解的一种有效方法。
Auto-B̈cklund Transformation for Travelling Wave Solutions of Some Nonlinear Partial Differential Equations
In this paper, we implemented Auto-B cklund transformation for finding the travelling wave solutions of the complexly coupled KdV equations and the sixth order equation of the Burgers hierarchy. These solutions are hyperbolic function solutions and exponential function solutions. The Auto- B cklund transformation used in this article is a powerful method for finding traveling wave solutions of nonlinear partial differential equations.