用微博平台上的语言描述政治领导人:推特上的厄瓜多尔人案例

O. Pita, G. Baquerizo, Carmen Vaca, Jonathan Mendieta, M. Villavicencio, Jorge Rodriguez
{"title":"用微博平台上的语言描述政治领导人:推特上的厄瓜多尔人案例","authors":"O. Pita, G. Baquerizo, Carmen Vaca, Jonathan Mendieta, M. Villavicencio, Jorge Rodriguez","doi":"10.1109/ETCM.2016.7750870","DOIUrl":null,"url":null,"abstract":"Social interaction on microblogging platforms is becoming a reliable instrument for studying political communication characteristics. Microblogging platforms, such as Twitter, let citizens to engage in the political debate generating well-defined profiles in the platform. Using publicly available tweets it is possible to build a linguistic profile to compare leaders and average citizens. We describe the linguistic analysis of 330,000 tweets collected from 221 Ecuadorian tweeters classified into three different profiles: political leaders, leaders' followers, and average local users. We build a feature vector for each user's tweets using 12 psychological dimensions included in the LIWC (Linguistic Inquiry Word Count) text analysis software and compare users with different profiles using those vectors. Our findings show that the leaders group exhibits a different linguistic profile from the others two groups: around 30% of leader followers are similar to at least one leader while just 19% of average local users are similar to at least one leader. Furthermore, the results of our analysis allows to determine whether local users have some similar characteristics of language uses on social networks of political leaders' followers without relying on critical discourse analysis.","PeriodicalId":6480,"journal":{"name":"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)","volume":"103 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Linguistic profiles on microblogging platforms to characterize political leaders: The Ecuadorian case on Twitter\",\"authors\":\"O. Pita, G. Baquerizo, Carmen Vaca, Jonathan Mendieta, M. Villavicencio, Jorge Rodriguez\",\"doi\":\"10.1109/ETCM.2016.7750870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social interaction on microblogging platforms is becoming a reliable instrument for studying political communication characteristics. Microblogging platforms, such as Twitter, let citizens to engage in the political debate generating well-defined profiles in the platform. Using publicly available tweets it is possible to build a linguistic profile to compare leaders and average citizens. We describe the linguistic analysis of 330,000 tweets collected from 221 Ecuadorian tweeters classified into three different profiles: political leaders, leaders' followers, and average local users. We build a feature vector for each user's tweets using 12 psychological dimensions included in the LIWC (Linguistic Inquiry Word Count) text analysis software and compare users with different profiles using those vectors. Our findings show that the leaders group exhibits a different linguistic profile from the others two groups: around 30% of leader followers are similar to at least one leader while just 19% of average local users are similar to at least one leader. Furthermore, the results of our analysis allows to determine whether local users have some similar characteristics of language uses on social networks of political leaders' followers without relying on critical discourse analysis.\",\"PeriodicalId\":6480,\"journal\":{\"name\":\"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)\",\"volume\":\"103 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETCM.2016.7750870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCM.2016.7750870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

微博平台上的社会互动正在成为研究政治传播特征的可靠工具。微博平台,如Twitter,让公民参与政治辩论,在平台上生成明确的个人资料。利用公开的推文,可以建立一个语言档案来比较领导人和普通公民。我们对从221位厄瓜多尔推特用户收集的33万条推文进行了语言分析,这些推文被分为三种不同的类型:政治领导人、领导人的追随者和普通当地用户。我们使用LIWC(语言查询字数统计)文本分析软件中包含的12个心理维度为每个用户的推文构建特征向量,并使用这些向量比较不同配置文件的用户。我们的研究结果表明,领导者群体与其他两个群体表现出不同的语言特征:大约30%的领导者追随者至少与一位领导者相似,而只有19%的普通本地用户至少与一位领导者相似。此外,我们的分析结果可以在不依赖于批评话语分析的情况下,确定当地用户在政治领导人追随者的社交网络上是否具有一些相似的语言使用特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linguistic profiles on microblogging platforms to characterize political leaders: The Ecuadorian case on Twitter
Social interaction on microblogging platforms is becoming a reliable instrument for studying political communication characteristics. Microblogging platforms, such as Twitter, let citizens to engage in the political debate generating well-defined profiles in the platform. Using publicly available tweets it is possible to build a linguistic profile to compare leaders and average citizens. We describe the linguistic analysis of 330,000 tweets collected from 221 Ecuadorian tweeters classified into three different profiles: political leaders, leaders' followers, and average local users. We build a feature vector for each user's tweets using 12 psychological dimensions included in the LIWC (Linguistic Inquiry Word Count) text analysis software and compare users with different profiles using those vectors. Our findings show that the leaders group exhibits a different linguistic profile from the others two groups: around 30% of leader followers are similar to at least one leader while just 19% of average local users are similar to at least one leader. Furthermore, the results of our analysis allows to determine whether local users have some similar characteristics of language uses on social networks of political leaders' followers without relying on critical discourse analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信