高水分生物质颗粒制备燃料过程的传热传质研究

Q3 Energy
A. Mitrofanov, O. Kolibaba, R. Gabitov, D. Dolinin, S. Vasilevich
{"title":"高水分生物质颗粒制备燃料过程的传热传质研究","authors":"A. Mitrofanov, O. Kolibaba, R. Gabitov, D. Dolinin, S. Vasilevich","doi":"10.21122/1029-7448-2023-66-4-374-386","DOIUrl":null,"url":null,"abstract":"Currently, in a number of countries an urgent task for development of fuel and energy complexes is to increase the share of generation by involving solid fuels in circulation. Among such projects, those that allow the disposal of waste from various industries are particularly significant. Expired food products in this context are represented as a renewable local energy resource. However, such products require serious activities to prepare them for incineration or other type of high-temperature processing in order to obtain energy. The purpose of the present work is to improve methods of preparing fuel from recycled carrot fruits (unsuitable for use in the food sector). During the fuel preparation of carrots, the drying stage is limiting for the rational organization of its processing in boilers. In addition, the drying stage is extremely energy-consuming, so reliable prediction of its kinetics largely determines the efficiency of the entire technological process. In the course of the study, the following tasks were solved: a numerical method was developed for describing the processes of internal and external heat and mass transfer problems using an explicit difference approximation of differential equations of heat and mass transfer; parametric identification of the proposed one-dimensional mathematical model was performed using empirical dependencies known from literature sources; empirical verification of the proposed mathematical model was carried out by comparing the calculated forecasts obtained with the results of their own field experiments. The fact that the proposed mathematical model and the results of the full-scale experiment are independent, while the calculated forecasts and experimental data are in good agreement, makes us possible to consider the proposed calculation method as a reliable scientific basis for a computer method for calculating of heat and mass transfer processes when organizing the preparation of fuel from carrot fruits.","PeriodicalId":52141,"journal":{"name":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Heat and Mass Transfer in the Process of Fuel Preparation from Biomass Particles with High Moisture\",\"authors\":\"A. Mitrofanov, O. Kolibaba, R. Gabitov, D. Dolinin, S. Vasilevich\",\"doi\":\"10.21122/1029-7448-2023-66-4-374-386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, in a number of countries an urgent task for development of fuel and energy complexes is to increase the share of generation by involving solid fuels in circulation. Among such projects, those that allow the disposal of waste from various industries are particularly significant. Expired food products in this context are represented as a renewable local energy resource. However, such products require serious activities to prepare them for incineration or other type of high-temperature processing in order to obtain energy. The purpose of the present work is to improve methods of preparing fuel from recycled carrot fruits (unsuitable for use in the food sector). During the fuel preparation of carrots, the drying stage is limiting for the rational organization of its processing in boilers. In addition, the drying stage is extremely energy-consuming, so reliable prediction of its kinetics largely determines the efficiency of the entire technological process. In the course of the study, the following tasks were solved: a numerical method was developed for describing the processes of internal and external heat and mass transfer problems using an explicit difference approximation of differential equations of heat and mass transfer; parametric identification of the proposed one-dimensional mathematical model was performed using empirical dependencies known from literature sources; empirical verification of the proposed mathematical model was carried out by comparing the calculated forecasts obtained with the results of their own field experiments. The fact that the proposed mathematical model and the results of the full-scale experiment are independent, while the calculated forecasts and experimental data are in good agreement, makes us possible to consider the proposed calculation method as a reliable scientific basis for a computer method for calculating of heat and mass transfer processes when organizing the preparation of fuel from carrot fruits.\",\"PeriodicalId\":52141,\"journal\":{\"name\":\"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21122/1029-7448-2023-66-4-374-386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/1029-7448-2023-66-4-374-386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

目前,在一些国家,发展燃料和能源综合体的一项紧迫任务是通过使固体燃料进入循环来增加发电的份额。在这些项目中,那些允许处理各种工业废物的项目尤为重要。在这种情况下,过期食品被表示为可再生的当地能源。然而,这类产品需要认真的活动来准备焚烧或其他类型的高温处理,以获得能量。本工作的目的是改进从回收的胡萝卜果实(不适合用于食品部门)制备燃料的方法。在胡萝卜燃料制备过程中,干燥阶段是制约其在锅炉中合理组织加工的关键环节。此外,干燥阶段是非常耗能的,因此其动力学的可靠预测在很大程度上决定了整个工艺过程的效率。在研究过程中,主要完成了以下任务:利用传热传质微分方程的显式差分近似,建立了一种描述内外传热传质问题过程的数值方法;利用文献中已知的经验依赖关系对所提出的一维数学模型进行参数识别;通过将计算预报结果与现场试验结果进行对比,对所提出的数学模型进行了实证验证。所提出的数学模型与全尺寸实验结果是独立的,而计算的预测结果与实验数据是一致的,这使得我们可以认为所提出的计算方法是在组织胡萝卜果燃料制备过程中计算传热传质过程的计算机方法的可靠科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Heat and Mass Transfer in the Process of Fuel Preparation from Biomass Particles with High Moisture
Currently, in a number of countries an urgent task for development of fuel and energy complexes is to increase the share of generation by involving solid fuels in circulation. Among such projects, those that allow the disposal of waste from various industries are particularly significant. Expired food products in this context are represented as a renewable local energy resource. However, such products require serious activities to prepare them for incineration or other type of high-temperature processing in order to obtain energy. The purpose of the present work is to improve methods of preparing fuel from recycled carrot fruits (unsuitable for use in the food sector). During the fuel preparation of carrots, the drying stage is limiting for the rational organization of its processing in boilers. In addition, the drying stage is extremely energy-consuming, so reliable prediction of its kinetics largely determines the efficiency of the entire technological process. In the course of the study, the following tasks were solved: a numerical method was developed for describing the processes of internal and external heat and mass transfer problems using an explicit difference approximation of differential equations of heat and mass transfer; parametric identification of the proposed one-dimensional mathematical model was performed using empirical dependencies known from literature sources; empirical verification of the proposed mathematical model was carried out by comparing the calculated forecasts obtained with the results of their own field experiments. The fact that the proposed mathematical model and the results of the full-scale experiment are independent, while the calculated forecasts and experimental data are in good agreement, makes us possible to consider the proposed calculation method as a reliable scientific basis for a computer method for calculating of heat and mass transfer processes when organizing the preparation of fuel from carrot fruits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
32
审稿时长
8 weeks
期刊介绍: The most important objectives of the journal are the generalization of scientific and practical achievements in the field of power engineering, increase scientific and practical skills as researchers and industry representatives. Scientific concept publications include the publication of a modern national and international research and achievements in areas such as general energetic, electricity, thermal energy, construction, environmental issues energy, energy economy, etc. The journal publishes the results of basic research and the advanced achievements of practices aimed at improving the efficiency of the functioning of the energy sector, reduction of losses in electricity and heat networks, improving the reliability of electrical protection systems, the stability of the energetic complex, literature reviews on a wide range of energy issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信