基于Hadoop集群的网络入侵检测输入分割设计技术

IF 0.6 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
V. Ciric, Dusan Cvetkovic, Nadja Gavrilovic, N. Stojanović, I. Milentijevic
{"title":"基于Hadoop集群的网络入侵检测输入分割设计技术","authors":"V. Ciric, Dusan Cvetkovic, Nadja Gavrilovic, N. Stojanović, I. Milentijevic","doi":"10.2298/fuee2102239c","DOIUrl":null,"url":null,"abstract":"Intrusion detection system (IDS) is one of the most important components being used to monitor network for possible cyber-attacks. However, the amount of data that should be inspected imposes a great challenge to IDSs. With recent emerge of various big data technologies, there are ways for overcoming the problem of the increased amount of data. Nevertheless, some of this technologies inherit data distribution techniques that can be a problem when splitting a sensitive data such as network data frames across a cluster nodes. The goal of this paper is design and implementation of Hadoop based IDS. In this paper we propose different input split techniques suitable for network data distribution across cloud nodes and test the performances of their Apache Hadoop implementation. Four different data split techniques will be proposed and analysed. The techniques will be described in detail. The system will be evaluated on Apache Hadoop cluster with 17 slave nodes. We will show that processing speed can differ for more than 30% depending on chosen input split design strategy. Additionally, we?ll show that malicious level of network traffic can slow down the processing time, in our case, for nearly 20%. The scalability of the system will al so be discussed.","PeriodicalId":44296,"journal":{"name":"Facta Universitatis-Series Electronics and Energetics","volume":"57 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Input splits design techniques for network intrusion detection on Hadoop cluster\",\"authors\":\"V. Ciric, Dusan Cvetkovic, Nadja Gavrilovic, N. Stojanović, I. Milentijevic\",\"doi\":\"10.2298/fuee2102239c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intrusion detection system (IDS) is one of the most important components being used to monitor network for possible cyber-attacks. However, the amount of data that should be inspected imposes a great challenge to IDSs. With recent emerge of various big data technologies, there are ways for overcoming the problem of the increased amount of data. Nevertheless, some of this technologies inherit data distribution techniques that can be a problem when splitting a sensitive data such as network data frames across a cluster nodes. The goal of this paper is design and implementation of Hadoop based IDS. In this paper we propose different input split techniques suitable for network data distribution across cloud nodes and test the performances of their Apache Hadoop implementation. Four different data split techniques will be proposed and analysed. The techniques will be described in detail. The system will be evaluated on Apache Hadoop cluster with 17 slave nodes. We will show that processing speed can differ for more than 30% depending on chosen input split design strategy. Additionally, we?ll show that malicious level of network traffic can slow down the processing time, in our case, for nearly 20%. The scalability of the system will al so be discussed.\",\"PeriodicalId\":44296,\"journal\":{\"name\":\"Facta Universitatis-Series Electronics and Energetics\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Electronics and Energetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/fuee2102239c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Electronics and Energetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/fuee2102239c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

入侵检测系统(IDS)是监测网络中可能发生的网络攻击的重要组成部分之一。然而,需要检查的数据量给入侵防御系统带来了巨大的挑战。随着近年来各种大数据技术的出现,有很多方法可以克服数据量增加的问题。然而,其中一些技术继承了数据分布技术,在跨集群节点拆分敏感数据(如网络数据帧)时可能会出现问题。本文的目标是基于Hadoop的入侵检测系统的设计与实现。在本文中,我们提出了不同的输入分割技术,适用于跨云节点的网络数据分布,并测试了它们的Apache Hadoop实现的性能。提出并分析了四种不同的数据分割技术。这些技术将被详细描述。系统将在17个从节点的Apache Hadoop集群上进行评估。我们将表明,根据所选择的输入分割设计策略,处理速度可能相差30%以上。此外,我们呢?我将展示恶意级别的网络流量会减慢处理时间,在我们的示例中,会减慢近20%。本文还讨论了系统的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Input splits design techniques for network intrusion detection on Hadoop cluster
Intrusion detection system (IDS) is one of the most important components being used to monitor network for possible cyber-attacks. However, the amount of data that should be inspected imposes a great challenge to IDSs. With recent emerge of various big data technologies, there are ways for overcoming the problem of the increased amount of data. Nevertheless, some of this technologies inherit data distribution techniques that can be a problem when splitting a sensitive data such as network data frames across a cluster nodes. The goal of this paper is design and implementation of Hadoop based IDS. In this paper we propose different input split techniques suitable for network data distribution across cloud nodes and test the performances of their Apache Hadoop implementation. Four different data split techniques will be proposed and analysed. The techniques will be described in detail. The system will be evaluated on Apache Hadoop cluster with 17 slave nodes. We will show that processing speed can differ for more than 30% depending on chosen input split design strategy. Additionally, we?ll show that malicious level of network traffic can slow down the processing time, in our case, for nearly 20%. The scalability of the system will al so be discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Facta Universitatis-Series Electronics and Energetics
Facta Universitatis-Series Electronics and Energetics ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
16.70%
发文量
10
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信