{"title":"移动服务机器人长期运行的动态地图","authors":"P. Biber, T. Duckett","doi":"10.15607/RSS.2005.I.003","DOIUrl":null,"url":null,"abstract":"This paper introduces a dynamic map for mobile robots that adapts continuously over time. It resolves the stability plasticity dilemma (the tradeoff between adaptation to new patterns and preservation of old patterns) by representing the environment over multiple time scales simultaneously (five in our experiments). A sample-based representation is proposed, where older memories fade at different rates depending on the time scale. Robust statistics are used to interpret the samples. It is shown that this approach can track both stationary and non-stationary elements of the environment, covering the full spectrum of variations from moving objects to structural changes. The method was evaluated in a five-week experiment in a real dynamic environment. Experimental results show that the resulting map is stable, improves its quality over time and adapts to changes.","PeriodicalId":87357,"journal":{"name":"Robotics science and systems : online proceedings","volume":"549 1","pages":"17-24"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"158","resultStr":"{\"title\":\"Dynamic Maps for Long-Term Operation of Mobile Service Robots\",\"authors\":\"P. Biber, T. Duckett\",\"doi\":\"10.15607/RSS.2005.I.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a dynamic map for mobile robots that adapts continuously over time. It resolves the stability plasticity dilemma (the tradeoff between adaptation to new patterns and preservation of old patterns) by representing the environment over multiple time scales simultaneously (five in our experiments). A sample-based representation is proposed, where older memories fade at different rates depending on the time scale. Robust statistics are used to interpret the samples. It is shown that this approach can track both stationary and non-stationary elements of the environment, covering the full spectrum of variations from moving objects to structural changes. The method was evaluated in a five-week experiment in a real dynamic environment. Experimental results show that the resulting map is stable, improves its quality over time and adapts to changes.\",\"PeriodicalId\":87357,\"journal\":{\"name\":\"Robotics science and systems : online proceedings\",\"volume\":\"549 1\",\"pages\":\"17-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"158\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics science and systems : online proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15607/RSS.2005.I.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics science and systems : online proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2005.I.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic Maps for Long-Term Operation of Mobile Service Robots
This paper introduces a dynamic map for mobile robots that adapts continuously over time. It resolves the stability plasticity dilemma (the tradeoff between adaptation to new patterns and preservation of old patterns) by representing the environment over multiple time scales simultaneously (five in our experiments). A sample-based representation is proposed, where older memories fade at different rates depending on the time scale. Robust statistics are used to interpret the samples. It is shown that this approach can track both stationary and non-stationary elements of the environment, covering the full spectrum of variations from moving objects to structural changes. The method was evaluated in a five-week experiment in a real dynamic environment. Experimental results show that the resulting map is stable, improves its quality over time and adapts to changes.