S. Varnagiris, J. Donėlienė, S. Tučkutė, J. Cesniene, M. Lelis, D. Milčius
{"title":"聚苯乙烯微珠包覆纳米SiO2膜形成膨胀聚苯乙烯泡沫及其吸湿性和抗机械应力分析","authors":"S. Varnagiris, J. Donėlienė, S. Tučkutė, J. Cesniene, M. Lelis, D. Milčius","doi":"10.1080/03602559.2017.1381244","DOIUrl":null,"url":null,"abstract":"ABSTRACTConventional expanded polystyrene can absorb moisture, which significantly degrades its properties. In the present study, it was demonstrated that SiO2 can be deposited on polystyrene beads before pre-expansion and molding steps. Under the applied test conditions, expanded polystyrene with nanocrystalline SiO2 additives had approximately 10% lower moisture adsorption and an 8.4% better resistance to deformation. Expanded polystyrene analysis suggested that the observed improvements were caused by the hydrophobic nature of nanocrystalline SiO2 and, even more importantly, because SiO2 acted as an amalgamation catalyst and significantly increased adhesion between the expanded polystyrene beads during the expanded polystyrene molding process.","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":"22 1","pages":"1296-1302"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Expanded Polystyrene Foam Formed from Polystyrene Beads Coated with a Nanocrystalline SiO2 Film and the Analysis of Its Moisture Adsorption and Resistance to Mechanical Stress\",\"authors\":\"S. Varnagiris, J. Donėlienė, S. Tučkutė, J. Cesniene, M. Lelis, D. Milčius\",\"doi\":\"10.1080/03602559.2017.1381244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTConventional expanded polystyrene can absorb moisture, which significantly degrades its properties. In the present study, it was demonstrated that SiO2 can be deposited on polystyrene beads before pre-expansion and molding steps. Under the applied test conditions, expanded polystyrene with nanocrystalline SiO2 additives had approximately 10% lower moisture adsorption and an 8.4% better resistance to deformation. Expanded polystyrene analysis suggested that the observed improvements were caused by the hydrophobic nature of nanocrystalline SiO2 and, even more importantly, because SiO2 acted as an amalgamation catalyst and significantly increased adhesion between the expanded polystyrene beads during the expanded polystyrene molding process.\",\"PeriodicalId\":20629,\"journal\":{\"name\":\"Polymer-Plastics Technology and Engineering\",\"volume\":\"22 1\",\"pages\":\"1296-1302\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer-Plastics Technology and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03602559.2017.1381244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer-Plastics Technology and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03602559.2017.1381244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Expanded Polystyrene Foam Formed from Polystyrene Beads Coated with a Nanocrystalline SiO2 Film and the Analysis of Its Moisture Adsorption and Resistance to Mechanical Stress
ABSTRACTConventional expanded polystyrene can absorb moisture, which significantly degrades its properties. In the present study, it was demonstrated that SiO2 can be deposited on polystyrene beads before pre-expansion and molding steps. Under the applied test conditions, expanded polystyrene with nanocrystalline SiO2 additives had approximately 10% lower moisture adsorption and an 8.4% better resistance to deformation. Expanded polystyrene analysis suggested that the observed improvements were caused by the hydrophobic nature of nanocrystalline SiO2 and, even more importantly, because SiO2 acted as an amalgamation catalyst and significantly increased adhesion between the expanded polystyrene beads during the expanded polystyrene molding process.