应用灰色理论模型进行西北地区水资源预测

Hongwei Zhang, Bigui Wei, Jianlin Liu, Hua Li
{"title":"应用灰色理论模型进行西北地区水资源预测","authors":"Hongwei Zhang, Bigui Wei, Jianlin Liu, Hua Li","doi":"10.1109/GIWRM.2012.6349662","DOIUrl":null,"url":null,"abstract":"Analysis of the data in the last six years by applying the gray theory model GM (1,1) revealed the amount of the water resources in Northwest China. On inspection, the relative error rate of the fore-cast results are all less than 0.1. This paper lists the analysis process of gray model, as well as the original data and projections fitting curves equation, which indicate obviously that the model can be well used for the prediction of the amount of water resources.","PeriodicalId":6394,"journal":{"name":"2012 International Symposium on Geomatics for Integrated Water Resource Management","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of the water resources by applying a grey theory model in Northwest China\",\"authors\":\"Hongwei Zhang, Bigui Wei, Jianlin Liu, Hua Li\",\"doi\":\"10.1109/GIWRM.2012.6349662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysis of the data in the last six years by applying the gray theory model GM (1,1) revealed the amount of the water resources in Northwest China. On inspection, the relative error rate of the fore-cast results are all less than 0.1. This paper lists the analysis process of gray model, as well as the original data and projections fitting curves equation, which indicate obviously that the model can be well used for the prediction of the amount of water resources.\",\"PeriodicalId\":6394,\"journal\":{\"name\":\"2012 International Symposium on Geomatics for Integrated Water Resource Management\",\"volume\":\"1 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Symposium on Geomatics for Integrated Water Resource Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GIWRM.2012.6349662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Symposium on Geomatics for Integrated Water Resource Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GIWRM.2012.6349662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用灰色理论模型GM(1,1)对近6年的数据进行分析,揭示了西北地区的水资源总量。经检验,各预测结果的相对错误率均小于0.1。本文列举了灰色模型的分析过程,以及原始数据和投影拟合曲线方程,明显表明该模型可以很好地用于水资源量的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of the water resources by applying a grey theory model in Northwest China
Analysis of the data in the last six years by applying the gray theory model GM (1,1) revealed the amount of the water resources in Northwest China. On inspection, the relative error rate of the fore-cast results are all less than 0.1. This paper lists the analysis process of gray model, as well as the original data and projections fitting curves equation, which indicate obviously that the model can be well used for the prediction of the amount of water resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信