几次表格到文本的生成,及时规划和知识记忆

ArXiv Pub Date : 2023-02-09 DOI:10.48550/arXiv.2302.04415
Zhixin Guo, Minyxuan Yan, Jiexing Qi, Jianping Zhou, Ziwei He, Zhouhan Lin, Guanjie Zheng, Xinbing Wang
{"title":"几次表格到文本的生成,及时规划和知识记忆","authors":"Zhixin Guo, Minyxuan Yan, Jiexing Qi, Jianping Zhou, Ziwei He, Zhouhan Lin, Guanjie Zheng, Xinbing Wang","doi":"10.48550/arXiv.2302.04415","DOIUrl":null,"url":null,"abstract":"Pre-trained language models (PLM) have achieved remarkable advancement in table-to-text generation tasks. However, the lack of labeled domain-specific knowledge and the topology gap between tabular data and text make it difficult for PLMs to yield faithful text. Low-resource generation likewise faces unique challenges in this domain. Inspired by how humans descript tabular data with prior knowledge, we suggest a new framework: PromptMize, which targets table-to-text generation under few-shot settings. The design of our framework consists of two aspects: a prompt planner and a knowledge adapter. The prompt planner aims to generate a prompt signal that provides instance guidance for PLMs to bridge the topology gap between tabular data and text. Moreover, the knowledge adapter memorizes domain-specific knowledge from the unlabelled corpus to supply essential information during generation. Extensive experiments and analyses are investigated on three open domain few-shot NLG datasets: human, song, and book. Compared with previous state-of-the-art approaches, our model achieves remarkable performance in generating quality as judged by human and automatic evaluations.","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":"55 7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Few-Shot Table-to-Text Generation with Prompt Planning and Knowledge Memorization\",\"authors\":\"Zhixin Guo, Minyxuan Yan, Jiexing Qi, Jianping Zhou, Ziwei He, Zhouhan Lin, Guanjie Zheng, Xinbing Wang\",\"doi\":\"10.48550/arXiv.2302.04415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pre-trained language models (PLM) have achieved remarkable advancement in table-to-text generation tasks. However, the lack of labeled domain-specific knowledge and the topology gap between tabular data and text make it difficult for PLMs to yield faithful text. Low-resource generation likewise faces unique challenges in this domain. Inspired by how humans descript tabular data with prior knowledge, we suggest a new framework: PromptMize, which targets table-to-text generation under few-shot settings. The design of our framework consists of two aspects: a prompt planner and a knowledge adapter. The prompt planner aims to generate a prompt signal that provides instance guidance for PLMs to bridge the topology gap between tabular data and text. Moreover, the knowledge adapter memorizes domain-specific knowledge from the unlabelled corpus to supply essential information during generation. Extensive experiments and analyses are investigated on three open domain few-shot NLG datasets: human, song, and book. Compared with previous state-of-the-art approaches, our model achieves remarkable performance in generating quality as judged by human and automatic evaluations.\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\"55 7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2302.04415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.04415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

预训练语言模型(PLM)在表到文本生成任务中取得了显著的进步。然而,缺乏标记的领域特定知识以及表格数据和文本之间的拓扑差距使得plm难以生成忠实的文本。低资源发电在这一领域也面临着独特的挑战。受人类如何用先验知识描述表格数据的启发,我们提出了一个新的框架:PromptMize,它的目标是在几次设置下生成表格到文本。我们的框架设计包括两个方面:提示计划器和知识适配器。提示计划器旨在生成提示信号,为plm提供实例指导,以弥合表格数据和文本之间的拓扑差距。此外,知识适配器从未标记的语料库中记忆特定于领域的知识,以便在生成过程中提供必要的信息。本文对人类、歌曲和书籍这三个开放域少镜头NLG数据集进行了广泛的实验和分析。与以前最先进的方法相比,我们的模型在通过人工和自动评估来判断生成质量方面取得了显着的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Few-Shot Table-to-Text Generation with Prompt Planning and Knowledge Memorization
Pre-trained language models (PLM) have achieved remarkable advancement in table-to-text generation tasks. However, the lack of labeled domain-specific knowledge and the topology gap between tabular data and text make it difficult for PLMs to yield faithful text. Low-resource generation likewise faces unique challenges in this domain. Inspired by how humans descript tabular data with prior knowledge, we suggest a new framework: PromptMize, which targets table-to-text generation under few-shot settings. The design of our framework consists of two aspects: a prompt planner and a knowledge adapter. The prompt planner aims to generate a prompt signal that provides instance guidance for PLMs to bridge the topology gap between tabular data and text. Moreover, the knowledge adapter memorizes domain-specific knowledge from the unlabelled corpus to supply essential information during generation. Extensive experiments and analyses are investigated on three open domain few-shot NLG datasets: human, song, and book. Compared with previous state-of-the-art approaches, our model achieves remarkable performance in generating quality as judged by human and automatic evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信