用离散元模型推导砂土的循环刚度和强度退化曲线

Fedor Maksimov, A. Tombari
{"title":"用离散元模型推导砂土的循环刚度和强度退化曲线","authors":"Fedor Maksimov, A. Tombari","doi":"10.3390/modelling3040026","DOIUrl":null,"url":null,"abstract":"Cyclic degradation in fully saturated sands is a liquefaction phenomenon characterized by the progressive variation of the soil strength and stiffness that occurs when the soil is subjected to cyclic loading in undrained conditions. An evaluation of the relationships between the degradation of the soil properties and the number of loading cycles is essential for deriving advanced cyclic constitutive soil models. Generally, the calibration of cyclic damage models can be performed through controlled laboratory tests, such as cyclic triaxial testing. However, the undrained response of soils is dependent on several factors, such as the fabric, sample preparation, initial density, initial stress state, and stress path during loading; hence, a large number of tests would be required. On the other hand, the Discrete Element Method offers an interesting approach to simulating the complex behavior of an assembly of particles, which can be used to perform simulations of geotechnical laboratory testing. In this paper, numerical triaxial analyses of sands with different consistencies, loose and medium-dense states, were performed. First, static triaxial testing was performed to characterize the sand properties and validate the results with the literature data. Then, cyclic undrained triaxial testing was performed to investigate the impact of the number of cycles on the cyclic degradation of the soil stiffness and strength. Laws that can be used in damage soil models were derived.","PeriodicalId":89310,"journal":{"name":"WIT transactions on modelling and simulation","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Derivation of Cyclic Stiffness and Strength Degradation Curves of Sands through Discrete Element Modelling\",\"authors\":\"Fedor Maksimov, A. Tombari\",\"doi\":\"10.3390/modelling3040026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyclic degradation in fully saturated sands is a liquefaction phenomenon characterized by the progressive variation of the soil strength and stiffness that occurs when the soil is subjected to cyclic loading in undrained conditions. An evaluation of the relationships between the degradation of the soil properties and the number of loading cycles is essential for deriving advanced cyclic constitutive soil models. Generally, the calibration of cyclic damage models can be performed through controlled laboratory tests, such as cyclic triaxial testing. However, the undrained response of soils is dependent on several factors, such as the fabric, sample preparation, initial density, initial stress state, and stress path during loading; hence, a large number of tests would be required. On the other hand, the Discrete Element Method offers an interesting approach to simulating the complex behavior of an assembly of particles, which can be used to perform simulations of geotechnical laboratory testing. In this paper, numerical triaxial analyses of sands with different consistencies, loose and medium-dense states, were performed. First, static triaxial testing was performed to characterize the sand properties and validate the results with the literature data. Then, cyclic undrained triaxial testing was performed to investigate the impact of the number of cycles on the cyclic degradation of the soil stiffness and strength. Laws that can be used in damage soil models were derived.\",\"PeriodicalId\":89310,\"journal\":{\"name\":\"WIT transactions on modelling and simulation\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIT transactions on modelling and simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/modelling3040026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIT transactions on modelling and simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/modelling3040026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

全饱和砂土的循环退化是一种液化现象,其特征是土壤在不排水条件下受到循环荷载时,土壤强度和刚度的逐渐变化。评估土壤性质退化与加载循环次数之间的关系对于推导先进的循环本构土模型至关重要。通常,循环损伤模型的校正可以通过受控的实验室试验进行,如循环三轴试验。然而,土的不排水响应取决于几个因素,如织物、样品制备、初始密度、初始应力状态和加载过程中的应力路径;因此,需要进行大量的测试。另一方面,离散单元法提供了一种有趣的方法来模拟颗粒组合的复杂行为,可用于模拟岩土工程实验室测试。本文对不同稠度、疏松状态和中致密状态的砂土进行了数值三轴分析。首先,进行静态三轴试验,表征砂粒特性,并与文献数据进行验证。然后进行循环不排水三轴试验,研究循环次数对土体刚度和强度循环退化的影响。导出了可用于损伤土模型的规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derivation of Cyclic Stiffness and Strength Degradation Curves of Sands through Discrete Element Modelling
Cyclic degradation in fully saturated sands is a liquefaction phenomenon characterized by the progressive variation of the soil strength and stiffness that occurs when the soil is subjected to cyclic loading in undrained conditions. An evaluation of the relationships between the degradation of the soil properties and the number of loading cycles is essential for deriving advanced cyclic constitutive soil models. Generally, the calibration of cyclic damage models can be performed through controlled laboratory tests, such as cyclic triaxial testing. However, the undrained response of soils is dependent on several factors, such as the fabric, sample preparation, initial density, initial stress state, and stress path during loading; hence, a large number of tests would be required. On the other hand, the Discrete Element Method offers an interesting approach to simulating the complex behavior of an assembly of particles, which can be used to perform simulations of geotechnical laboratory testing. In this paper, numerical triaxial analyses of sands with different consistencies, loose and medium-dense states, were performed. First, static triaxial testing was performed to characterize the sand properties and validate the results with the literature data. Then, cyclic undrained triaxial testing was performed to investigate the impact of the number of cycles on the cyclic degradation of the soil stiffness and strength. Laws that can be used in damage soil models were derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信