一种改进的遗传算法

Liyuan Deng, Ping Yang, Weidong Liu
{"title":"一种改进的遗传算法","authors":"Liyuan Deng, Ping Yang, Weidong Liu","doi":"10.1109/ICCC47050.2019.9064374","DOIUrl":null,"url":null,"abstract":"Aiming at the disadvantage of premature convergence of basic genetic algorithm, an adaptive simulated annealing genetic tabu search algorithm is proposed. This algorithm fully combines the global convergence and adaptability of simulated annealing algorithm and the strong climbing ability and high efficiency of tabu search strategy. It has strong convergence and adaptability. The simulation results of the adaptive simulated annealing genetic tabu search algorithm are given and compared with the basic genetic algorithm and simulated annealing algorithm. The simulation results show that the algorithm has better convergence and optimization performance, and can better solve the combinatorial optimization problem.","PeriodicalId":6739,"journal":{"name":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","volume":"44 1","pages":"47-51"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Genetic Algorithm\",\"authors\":\"Liyuan Deng, Ping Yang, Weidong Liu\",\"doi\":\"10.1109/ICCC47050.2019.9064374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the disadvantage of premature convergence of basic genetic algorithm, an adaptive simulated annealing genetic tabu search algorithm is proposed. This algorithm fully combines the global convergence and adaptability of simulated annealing algorithm and the strong climbing ability and high efficiency of tabu search strategy. It has strong convergence and adaptability. The simulation results of the adaptive simulated annealing genetic tabu search algorithm are given and compared with the basic genetic algorithm and simulated annealing algorithm. The simulation results show that the algorithm has better convergence and optimization performance, and can better solve the combinatorial optimization problem.\",\"PeriodicalId\":6739,\"journal\":{\"name\":\"2019 IEEE 5th International Conference on Computer and Communications (ICCC)\",\"volume\":\"44 1\",\"pages\":\"47-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 5th International Conference on Computer and Communications (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCC47050.2019.9064374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC47050.2019.9064374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对基本遗传算法过早收敛的缺点,提出了一种自适应模拟退火遗传禁忌搜索算法。该算法充分结合了模拟退火算法的全局收敛性和适应性,以及禁忌搜索策略的强爬升能力和高效率。具有较强的收敛性和适应性。给出了自适应模拟退火遗传禁忌搜索算法的仿真结果,并与基本遗传算法和模拟退火算法进行了比较。仿真结果表明,该算法具有较好的收敛和优化性能,能够较好地解决组合优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Genetic Algorithm
Aiming at the disadvantage of premature convergence of basic genetic algorithm, an adaptive simulated annealing genetic tabu search algorithm is proposed. This algorithm fully combines the global convergence and adaptability of simulated annealing algorithm and the strong climbing ability and high efficiency of tabu search strategy. It has strong convergence and adaptability. The simulation results of the adaptive simulated annealing genetic tabu search algorithm are given and compared with the basic genetic algorithm and simulated annealing algorithm. The simulation results show that the algorithm has better convergence and optimization performance, and can better solve the combinatorial optimization problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信